盾构隧道壁后注浆智能检测的“云--端”架构及应用
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院;岩土及地下工程教育部重点实验室,上海 200092;2.中铁十五局集团有限公司,上海 200070

作者简介:

李康(1995- ),男,博士生,主要从事盾构隧道GPR壁后注浆检测和数据智能分析研究,E-mail:kon_li@163.com。
LI Kang (1995- ), PhD candidate, main research interests: GPR detection of backfill grouting in shield tunnels and intelligent analysis of GPR data, E-mail: kon_li@163.com.

通讯作者:

谢雄耀(通信作者),男,教授,博士生导师,E-mail:xiexiongyao@tongji.edu.cn。

中图分类号:

U455.3

基金项目:

国家重点研发计划(2023YFC3806705);国家自然科学基金(52038008、52378408);上海市科委项目(22dz1203004);国网上海市电力公司项目(52090W23000B)


Cloud-edge-end architecture and application for intelligent detection of backfill grouting in shield tunnels
Author:
Affiliation:

1.College of Civil Engineering; Key Laboratory of Geotechnical and Underground of Ministry of Education, Tongji University, Shanghai 200092, P. R. China;2.China Railway 15th Bureau Group Co. Ltd, Shanghai 200070, P. R. China

Fund Project:

National Key R & D Program of China (No. 2023YFC3806705); National Natural Science Foundation of China (Nos. 52038008, 52378408); Science and Technology Innovation Plan of Shanghai Science and Technology Commission (No. 22dz1203004); State Grid Shanghai Municipal Electric Power Company (No. 52090W23000B)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着城市轨道交通的不断发展,盾构隧道的建设需求和数量不断增加。盾构隧道壁后注浆是控制地层扰动和管片错台等工程问题的关键技术,对保障盾构施工和地表建筑安全都十分重要。为实现壁后注浆检测的自动化和智能化,针对传统探地雷达(ground penetrating radar,GPR)人工检测效率低的缺点,提出可实现壁后注浆质量GPR自动化快速检测的车架随行式机构,并详细说明了机构的硬件组成、工作模式和主要参数。针对不同工况开展的系列模型试验获得了超60万条高质量带标签的A扫描数据,基于A扫描和B扫描两种试验数据类型和训练策略得到具有优异性能的壁后注浆厚度智能识别模型。提出基于“云-边-端”架构的壁后注浆智能化检测方法,并开发了基于部分“云-边-端”架构的GPR-AI Master平台,实现对人工智能模型的云上部署和快速应用。提出基于车架随行式检测机构和智能分析结果的动态反馈机制,实现对隧道掘进的全过程守护。根据16个不同盾构隧道工程的应用结果,验证了智能检测方法的效果。

    Abstract:

    With the continuous development of urban rail transit, the demand and quantity of shield tunnel construction are constantly increasing. Backfill grouting behind the shield tunnel lining is a crucial technology for controlling engineering issues such as ground disturbance and segment misalignment, which is vital for ensuring the safety of shield construction and surface buildings. In order to achieve automation and intelligence in backfill grouting detection, and to address the low efficiency of traditional Ground Penetrating Radar (GPR) manual detection, a Loaded-to-Frame (LTF) equipment capable of rapid automated GPR detection of grouting quality is proposed. The hardware composition, operating mode, and main parameters of the LTF equipment are described in detail. A series of model tests conducted under various conditions yielded over 600 000 high-quality labeled A-scan data. Based on both A-scan and B-scan data types and training strategies, intelligent models with excellent performance for backfill grouting thickness recognition are developed. An intelligent detection method for backfill grouting based on a “cloud-edge-end” architecture is proposed, and the GPR-AI Master platform, based on partial “cloud-edge-end” architecture, is developed to achieve cloud deployment and rapid application of the artificial intelligence model. A dynamic feedback mechanism based on the LTF equipment and intelligent analysis results is proposed, realizing comprehensive monitoring throughout the tunnel excavation process. The application is derived from 16 distinct shield tunnel projects domestically and internationally validate the effectiveness of the intelligent detection method, providing valuable references for the secure and intelligent construction of shield tunnels.

    参考文献
    相似文献
    引证文献
引用本文

李康,谢雄耀,周彪,曾里,黄昌富.盾构隧道壁后注浆智能检测的“云--端”架构及应用[J].土木与环境工程学报(中英文),2025,47(5):67-76. LI Kang, XIE Xiongyao, ZHOU Biao, ZENG Li, HUANG Changfu. Cloud-edge-end architecture and application for intelligent detection of backfill grouting in shield tunnels[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):67-76.10.11835/j. issn.2096-6717.2024.063

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码