基于多目视觉摄像与图像识别技术的TBM施工隧道围岩结构面识别方法
CSTR:
作者:
作者单位:

1.中国建设基础设施有限公司,北京 100089;2.水利部水利水电规划设计总院,北京 100120

作者简介:

宋浩天(1997- ),男,主要从事地铁隧道施工技术研究,E-mail:m18315965289@163.com。
SONG Haotian (1997- ), main research interest: subway tunnel construction technology, E-mail: m18315965289@163.com.

通讯作者:

中图分类号:

U455.43

基金项目:

山东省自然科学基金(ZR2021QD121)


A method for identifying the structural planes of surrounding rock in TBM construction tunnels based on multi camera vision and image recognition technology
Author:
Affiliation:

1.China Construction Infrastructure Co., Ltd., Beijing 100089, P. R. China;2.Water Resources and Hydropower Planning and Design Institute of the Ministry of Water Resources, Beijing 100120, P. R. China

Fund Project:

Shandong Provincial Natural Science Foundation (No. ZR2021QD121)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    围岩结构面是影响全断面岩石隧道掘进机(TBM)的掘进效率与安全性的关键地质因素之一,探索快速、准确、环境适应性强的TBM隧道围岩结构面识别方法具有重要意义。提出一种基于多目视觉摄像与图像识别技术的围岩结构面识别方法。采用双目相机,通过固定机位拍摄大面积裸露围岩的彩色与深度图像,根据双目相机位置与拍摄角度等参数,修正深度图像,以克服图像畸变问题;采用精细边界刻画(CED)方法对围岩结构面精细识别。该方法在传统卷积神经网络基础上增设了图像数据的正向传播与反向细化双路径,在反向细化路径中不断强化对图像局部边界的捕捉,捕捉图像中结构面与常规围岩像素的差异,进而刻画围岩结构面边界。依托青岛地铁6号线TBM施工隧道,采集427组现场围岩的彩色与深度图像,通过对比模型识别以及结构面的实际形态,进一步验证方法的准确性。

    Abstract:

    The structural plane of surrounding rock is one of the key geological factors affecting the efficiency and safety of TBM excavation. Developing a rapid, precise, and adaptable method for identifying the structural plane of surrounding rock in TBM tunnels is of great significance. This article proposes a method for identifying rock structure planes based on multi camera vision and image recognition technology. Specifically, based on the equipment using binocular cameras, color and depth images of large exposed surrounding rocks are captured at fixed positions. The depth images are corrected to overcome image distortion issues based on positional parameters such as the position and shooting angle of the binocular camera. Furthermore, the Fine Boundary Description (CED) method was adopted to achieve precise identification of the structural planes of the surrounding rock. This approach is founded on traditional convolutional neural networks and adds a dual path of forward propagation and backward refinement of image data. In the backward refinement path, it continuously strengthens the capture of local boundaries in the image, captures the differences between structural planes and conventional surrounding rock pixels in the image, and then characterizes the boundaries of surrounding rock structural planes. Based on the TBM construction tunnel of Qingdao Metro Line 6, 427 sets of color and depth images of the surrounding rock were collected on site. By comparing the model recognition with the actual morphology of cracks, this method was further validated.

    参考文献
    相似文献
    引证文献
引用本文

宋浩天,李宁博,纪宏奎,肖禹航,王银坤,刘彬.基于多目视觉摄像与图像识别技术的TBM施工隧道围岩结构面识别方法[J].土木与环境工程学报(中英文),2025,47(5):77-85. SONG Haotian, LI Ningbo, JI Hongkui, XIAO Yuhang, WANG Yinkun, LIU Bin. A method for identifying the structural planes of surrounding rock in TBM construction tunnels based on multi camera vision and image recognition technology[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):77-85.10.11835/j. issn.2096-6717.2024.074

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码