基于无人机图像与深度学习的高原地区隧道洞门墙病害检测方法
CSTR:
作者:
作者单位:

1.长安大学 公路学院,西安 710064;2.新疆交通建设管理局,乌鲁木齐 830002

作者简介:

车博文(1999- ),男,主要从事寒区结构健康监测研究,E-mail:cbwcbwcbw2@126.com。
CHE Bowen (1999- ), main research interest: structural health monitoring in cold regions, E-mail: cbwcbwcbw2@126.com.

通讯作者:

包卫星(通信作者),男,博士,教授,E-mail:baowx@chd.edu.cn。

中图分类号:

U457.2

基金项目:

新疆重大科技专项(2020A03003-7);陕西省自然科学基础研究计划(2021JM-180);中央高校基本科研业务费(领军人才计划)(300102211302)


Disease detection method of tunnel portals in plateau region based on UAV images and deep learning
Author:
Affiliation:

1.School of Highway, Chang’an University, Xi’an 710064, P. R. China;2.Xinjiang Transportation Construction Administration, Urumqi 830002, P. R. China

Fund Project:

Major Science and Technology Projects in Xinjiang (No. 2020A03003-7); Shaanxi Province Natural Science Basic Research Project (No. 2021JM-180); Basic Scientific Research Funds of Central Universities (Leading Talents Program) (No. 300102211302)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对修建在高原恶劣环境下的隧道洞门墙病害频发及传统人工病害检测方法效率低下、危险性高等问题,提出基于无人机图像与深度学习的高原区隧道洞门墙病害检测方法。首先使用无人机航拍采集新疆某高原地区隧道洞门墙病害图像,建立多病害语义分割数据集;随后以语义分割模型DeeplabV3+为基础,提出以MobileNetV2作为主干特征提取网络的改进模型TP-DeeplabV3+,以减少模型参数;采用Focal Loss作为损失函数,以解决病害图像中的类别不平衡问题;添加CA注意力机制,以提升模型分割性能;最后提出病害量化方法。结果表明,TP-DeeplabV3+在测试集上可以达到88.37%和94.93%的mIoU和mPA,模型体量压缩了88.83%;提出的病害量化方法对于病害覆盖率的绝对误差不超过0.3%,相对误差维持在7.31%以下。相比传统方法,该方法安全、准确地实现了高原恶劣环境下的隧道洞门墙智能化检测。

    Abstract:

    In light of the prevalent diseases of tunnel portals built in the harsh environment of the plateau region and the problems of low efficiency and high risk associated with traditional manual disease detection methods, a novel disease detection method for tunnel portals in the plateau region based on Unmanned Aerial Vehicle (UAV) image and deep learning was proposed. Firstly, an UAV was used to collect the disease images of a tunnel portal in the plateau region of Xinjiang, and a multi-disease semantic segmentation dataset was constructed. Then, based on DeeplabV3+, an improved model TP-DeeplabV3+ was proposed, which used MobileNetV2 as the backbone feature extraction network to reduce model parameters; Used Focal Loss as the loss function to solve the category imbalance problem in disease images; Used the CA attention mechanism to improve the segmentation performance; and proposed the disease quantification method. Experiment results show that TP-DeeplabV3+ attains 88.37% and 94.93% of mIoU and mPA on the test set, respectively. Furthermore, the model volume is reduced by 88.83%. The absolute error of the proposed disease quantification method for disease coverage rate is less than 0.3%, and the relative error is maintained below 7.31%. Compared with the traditional manual method, the proposed method facilitates the intelligent detection of tunnel portal safely and accurately in plateau region.

    参考文献
    相似文献
    引证文献
引用本文

车博文,包卫星,郭强,潘振华,卢汉青,尹严.基于无人机图像与深度学习的高原地区隧道洞门墙病害检测方法[J].土木与环境工程学报(中英文),2025,47(5):86-96. CHE Bowen, BAO Weixing, GUO Qiang, PAN Zhenhua, LU Hanqing, YIN Yan. Disease detection method of tunnel portals in plateau region based on UAV images and deep learning[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):86-96.10.11835/j. issn.2096-6717.2023.148

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码