建筑饰面砖空鼓缺陷无人机识别关键参数试验研究
CSTR:
作者:
作者单位:

1.西南交通大学 土木工程学院,成都 610031;2.四川省建筑设计研究院有限公司,成都 610095;3.成都西南交通大学设计研究院有限公司,成都 610031

作者简介:

赵仕兴(1970- ),男,教授级高级工程师,主要从事高层建筑结构、复杂结构的设计与研究,E-mail:316458931@qq.com。
ZHAO Shixing (1970- ), professor level senior engineer, main research interests: high-rise building structure and complex structure, E-mail: 316458931@qq.com.

通讯作者:

许浒(通信作者),男,副教授,博士,E-mail:xuhu@swjtu.edu.cn。

中图分类号:

TU18

基金项目:

国家自然科学基金(52308330);四川省建筑设计研究院有限公司科研项目(KYYN202231-F1)


Experimental study on key parameters for identification of hollowing defects via UAV in facade tiles
Author:
Affiliation:

1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China;2.Sichuan Provincial Architectural Design and Research Institute Co. Ltd., Chengdu 610095, P. R. China;3.Southwest Jiaotong University Chengdu Design Institute Co. Ltd., Chengdu 610031, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 52308330); Research Project of Sichuan Provincial Architectural Design and Research Institute Co. Ltd. (No. KYYN202231-F1)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了应对当前建筑外墙饰面砖频繁脱落造成的公共安全隐患,通过归纳总结饰面砖缺陷的形成机理发现,空鼓缺陷为外墙饰面砖脱落的前奏。基于无人机搭载红外热成像相机,通过开展空鼓缺陷检测室内试验,研究无人机的最佳观测姿态,揭示无人机旋翼工作对外墙温度的影响规律,探讨空鼓缺陷特征参数对识别效果的影响,提出一种用于外墙饰面砖空鼓识别的温差阈值。结果表明:当无人机距外墙的距离为2~3 m、立面观测角度为-30°~30°、平面观测角度为-15°~15°时,观测效果最佳;无人机旋翼会使外墙降温增速10%;空鼓尺寸越大、埋深越浅、厚度越大,识别效果越好;黑色和红色饰面砖内的空鼓缺陷温度偏高,淡黄色饰面砖内的空鼓缺陷温度偏低。在此基础上开展室外试验,通过与可见光图像识别方法进行对比,验证了所提出检测阈值的有效性,为建筑饰面砖空鼓缺陷的识别提供了新途径。

    Abstract:

    To mitigate the safety hazards posed by the frequent detachment of facade tiles, this study summarized the causes of these defects, identifying hollowing defects as precursors to exterior wall tile detachment. Using an Unmanned Aerial Vehicle (UAV) equipped with infrared thermal imaging camera, the study conducted laboratory tests for hollowing detection. The optimal observation attitude of the UAV was investigated. The impact of defect characteristic parameters on identification accuracy and the effect of UAV rotor operation on the temperature of external walls were evaluated. Additionally, a temperature difference threshold was proposed for the identification of hollowing in exterior wall facade tiles. The study indicated that optimal observation occurs when the UAV is 2 to 3 meters from the external wall, with a vertical angle of -30° to 30° and a horizontal angle of -15° to 15°. The drone rotors increase the cooling rate of external walls by 10%. Recognition improves with hollowing of larger sizes, shallower depths, and greater thicknesses. Hollowing defects in black and red tiles exhibited higher temperatures, while those in yellowish tiles exhibited lower temperatures. Consequently, an outdoor test was conducted to verify the efficacy of the proposed detection method by comparing it with visible light image recognition, which provides a novel threshold for the expeditious identification of hollowing defects in facade tiles.

    参考文献
    相似文献
    引证文献
引用本文

赵仕兴,马麟涛,许浒,田永丁,何佳斌,余志祥.建筑饰面砖空鼓缺陷无人机识别关键参数试验研究[J].土木与环境工程学报(中英文),2025,47(5):97-109. ZHAO Shixing, MA Lintao, XU Hu, TIAN Yongding, HE Jiabin, YU Zhixiang. Experimental study on key parameters for identification of hollowing defects via UAV in facade tiles[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):97-109.10.11835/j. issn.2096-6717.2024.086

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码