桥梁拉索动力响应监测数据质量评价方法
CSTR:
作者:
作者单位:

1.北京建筑大学 土木与交通工程学院,北京 100044;2.山东省交通规划设计院集团有限公司, 济南 250101

作者简介:

邓扬(1984- ),男,教授,博士生导师,主要从事结构健康监测研究,E-mail:dengyang@bucea.edu.cn。
DENG Yang (1984- ), professor, doctorial supervisor, main research interest: structural health monitoring, E-mail: dengyang@bucea.edu.cn.

通讯作者:

鞠翰文(通信作者),男,E-mail:jhwrrr@sina.com。

中图分类号:

TU317

基金项目:

国家自然科学基金(51878027);北京市教委青年拔尖人才培育计划(CIT & TCD201904060);北京建筑大学基本科研业务费项目(X20174、X21073);山东省交通运输厅科技计划(2021B66)


Data quality evaluation method for dynamic response monitoring of bridge cables
Author:
Affiliation:

1.School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China;2.Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, P. R. China

Fund Project:

National Natural Science Foundation of China (No. 51878027); Beijing Municipal Education Commission (No. CIT & TCD201904060); Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (Nos. X20174, X21073); Science and Technology Plan Project of Shandong Provincial Department of Transportation (No. 2021B66)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    桥梁拉索动力响应监测数据中存在大量低质量数据,现有的监测数据检测研究集中于时域波形异常的明显异常数据,然而监测数据中还存在时域波形正常但频域特征混乱的数据,这类数据无法准确地反映桥梁拉索动力特性。针对该问题,将现有的异常数据检测拓展为数据质量评价,同时对明显异常数据和频域混乱数据进行检测。采用卷积神经网络(CNN)和数据频域特征建立桥梁拉索动力响应监测数据质量评价方法,实施流程包括:采用快速傅里叶变换(FFT)将时域数据序列转化为功率谱密度函数(PSDF),利用格拉姆角场(GAF)方法对PSDF序列进行可视化,进而搭建CNN模型,对监测数据质量进行自动化评价。以某斜拉桥的拉索加速度监测数据为例开展应用研究,结果表明,与时域序列检测方法相比,PSDF序列检测方法能够更好地区分正常与频域混乱数据,评价准确率更高;利用两个传感器监测数据建立的CNN模型对所有26个传感器监测数据质量评价准确率均在94%以上;此外,将该评价模型应用于另一座类似桥梁的监测数据质量评价中,准确率也达到95%。

    Abstract:

    There is a large amount of low-quality data in the monitoring data of bridge cable dynamic response. The existing data detection research focuses on obviously abnormal data with abnormal time-domain waveforms. However, there is chaotic data in frequency-domain characteristics with normal time-domain waveforms in the monitoring data, which can’t accurately reflect the dynamic characteristics of bridge cables. Aiming at this problem, the existing abnormal data detection is extended to data quality evaluation, and obvious abnormal data and frequency-domain chaotic data are detected at the same time. The data quality evaluation method of bridge cable dynamic response monitoring is established by using a convolutional neural network (CNN) and data frequency-domain features. The implementation process includes: the time-domain data sequence is transformed into a power spectral density function (PSDF) by fast Fourier transform (FFT); the Gramian angular field (GAF) method is used to visualize the PSDF sequence, and a CNN model is built to evaluate the data quality automatically. Taking the cable acceleration monitoring data of a cable-stayed bridge as an example, the proposed method is validated. The results show that compared with the time-domain sequence detection method, the PSDF sequence detection method can better distinguish normal and pseudo-normal data, and has a higher evaluation accuracy; the accuracy of the CNN model, established by using the monitoring data of two sensors, to evaluate the quality of all 26 sensor monitoring data is above 94%. In addition, the evaluation model, established by this method, is applied to the monitoring data quality evaluation of another similar bridge with an accuracy of 95%.

    参考文献
    相似文献
    引证文献
引用本文

邓扬,张强,钟国强,柳尚,徐润,鞠翰文.桥梁拉索动力响应监测数据质量评价方法[J].土木与环境工程学报(中英文),2025,47(5):208-217. DENG Yang, ZHANG Qiang, ZHONG Guoqiang, LIU Shang, XU Run, JU Hanwen. Data quality evaluation method for dynamic response monitoring of bridge cables[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2025,47(5):208-217.10.11835/j. issn.2096-6717.2023.080

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码