钢筋混凝土简支深梁的拓扑优化设计方法试验研究
DOI:
作者:
作者单位:

湖南科技大学土木工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Experimental Study on Simply Supported Reinforced Concrete Deep Beams of Topology Optimization Design Method
Author:
Affiliation:

School of Civil Engineering, Hunan University of Science and technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢筋分离模型遗传双向演化结构优化采用逐代概率性舍去与逐代概率性复活并存的演化机制,针对钢筋单元进行优化,可获取基于应力均匀化分布的最优钢筋拓扑,为深梁等二维构件的工程配筋设计提供新思路。根据钢筋分离模型遗传双向演化结构优化和中国规范推荐的经验设计方法完成一组钢筋混凝土简支深梁的配筋对比静力试验。试验结果表明,钢筋分离模型遗传双向演化结构优化设计的构件消耗较少的钢筋用量,获得较高的极限承载能力,有着更充分的裂缝开展和更佳的耗能能力,以斜钢筋补强斜截面的配筋设计方式也更符合构件的受力机理和特性。总的来说,钢筋分离模型遗传双向演化结构优化在深梁配筋设计方面的能力得到了证实,可以供日后的工程设计参考。

    Abstract:

    The genetic bi-directional evolutionary structural optimization (GBESO) of separated elements model adopts the evolution mechanism by generation probabilistic eliminate and reactivation, which can obtain the optimal topology based on uniform stress distribution by optimizing the steel bar element, and provide a new idea for engineering reinforcement design of two-dimensional components such as deep beam. According to the GBESO and the empirical design method recommended by the Chinese code, a group of reinforced concrete simply supported deep beam reinforcement contrast static test was completed. Results show that the component designed by GBESO consumes less steel bars, has higher ultimate bearing capacity, better cracks distribution, and better energy dissipation ability in the process of destruction, the reinforcement design approach is more conform to the mechanism of the component due to the oblique steer bars reinforcement of the oblique section. To sum up, the capability and reliability of t separated elements model GBESO in the design of deep beam reinforcement have been confirmed, which can be used as a reference for future engineering design.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-17
  • 最后修改日期:2020-05-25
  • 录用日期:2020-06-10
  • 在线发布日期:
  • 出版日期: