Abstract:In order to explore the influence of different strengthening schemes using steel plate on the bearing capacity of corroded RC beams, and the strengthening effect of different strengthening schemes are explored. The characteristics in the bearing capacity, deformation, failure mode and ductility of corroded RC beams strengthening by steel plate with flexural strengthening schemes, shear strengthening scheme and flexure-shear combination strengthening scheme are compared, and the advantages and disadvantages of different strengthening schemes are analyzed. The results show that: for the flexure-strengthened corroded beam which steel plate thickness are 3mm, 4mm and 5mm, respectively, the ultimate bearing capacity of flexural strengthened corroded beams increases by 7-18kN with the increase of steel plate thickness. The effect of combined strengthening is most obvious, and the ultimate bearing capacity increases by 107.7% compared with corroded beams. Combined strengthened corroded beams have the strongest deformation resistance, the followed is flexure-strengthened corroded beams, the increase of steel plate thickness has a positive effect on the deformation resistance of flexure-strengthened corroded beam. The combined strengthening scheme can most effectively improve the ductility of corroded beam than the other two strengthening schemes, the ductility of which is improved by 320.4% compared with corroded beam, followed by shear strengthened corroded beams. The ductility of flexure-strengthened corroded beam is smaller than that of other two kinds of strengthened beams, and which increases first and then decreases with the increase of steel plate thickness. The deformation resistance and ductility should be considered comprehensively when evaluating the strengthening effect of flexure and shear strengthened corroded beams.