高速移动荷载作用下无砟轨道路基动应力研究
CSTR:
作者单位:

华东交通大学

基金项目:

国家自然科学基金,江西省优势科技创新团队建设计划,江西省主要学科学术和技术带头人培养计划


Study on dynamic stress of ballastless track subgradeunder high-speed moving load
Author:
Affiliation:

East China Jiaotong University

Fund Project:

National Natural Science Foundation of China,Jiangxi Province Advantage Science and Technology Innovation Team Building Plan Project,The training plan for academic and technical leaders of major disciplines in Jiangxi Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • | | | |
  • 文章评论
    摘要:

    建立三维有限元无砟轨道-路基-天然地基土非线性数值分析模型,基于轨道随机不平顺条件下计算得到轮轨载荷,通过有限元软件二次开发子程序将轮轨载荷导入有限元模型,模型内部采用有限元单元,路基两端及天然地基土体四周采用无限元单元模拟工程实际半无限空间体,路基和天然地基土采用Drucker-Prager弹塑性本构模型,在此基础上研究分析高速移动荷载作用下路基的动应力分布规律。研究结果表明:竖向动应力沿横向分布规律,在轨道结构中数值较大,路基基床内远小于轨道结构中的数值,基床表层及基床底层底面出现“马鞍形”分布;沿竖向分布,随着深度的增加,竖向动应力逐渐减小,在基床表层内的衰减率较大,甚至超过50%;沿纵向分布,在轨道结构层内产生了与列车轮对数目相等的应力峰值数目,在路基基床内,由于距离相近的轮对产生的动力响应进行了叠加,应力峰值数目减少;路基基床在分散、缓冲及吸收竖向动应力中起了主要作用,同时混凝土底座边缘与基床表层接触部分易发生破坏,在设计中应引起足够重视。

    Abstract:

    Establish a three-dimensional finite element ballastless track-subgrade-natural foundation soil nonlinear numerical analysis model, calculate the wheel-rail load based on the random irregularity of the track, and import the wheel-rail load into the finite element model through the secondary development subroutine of the finite element software. The finite element element is used inside the model. The infinite element elements are used to simulate the actual semi-infinite space of the project at both ends of the subgrade and around the natural foundation soil. The Drucker-Prager elastoplastic constitutive model is used for the subgrade and natural foundation soil. Law of dynamic stress distribution of subgrade under moving load. The research results show that the vertical dynamic stress is distributed along the lateral direction, and the value in the track structure is larger, the subgrade bed is much smaller than the value in the track structure, and the “saddle” distribution appears on the surface of the bed and the bottom of the bed; along the vertical As the depth increases, the vertical dynamic stress gradually decreases, and the attenuation rate in the surface layer of the bed is large, even more than 50%; along the longitudinal distribution, the number of train wheel pairs is generated in the track structure layer. The number of stress peaks in the subgrade bed is reduced due to the superposition of the dynamic responses generated by the wheelsets close to each other, and the number of stress peaks is reduced; the subgrade bed plays a major role in dispersing and buffering the vertical dynamic stress, and the concrete The contact part between the edge of the base and the surface layer of the bed is prone to damage, so it should be given enough attention in the design.

    参考文献
    [1] 孙章, ZHANG Liman. 高速铁路化—中国铁路又出发[J]. 城市轨道交通研究, 2020(02):8, 148-149.UN Z, ZHANG L M. The Next Journey for China Railway—Intellectualization of High-speed Train[J]. Urban Mass Transit, 2020(02):8, 148-149.
    [2] 聂志红, 刘宝琛, 李亮, 等. 移动荷载作用下轨道路基动力响应分析[J]. 中国铁道科学. 2006, 27(2):15-19.IE Z H, LIU B C, LI L, et al. Study on the Dynamic Response of the Track/Subgrade under Moving Load[J]. China Railway Science. 2006, 27(2):15-19.
    [3] 薛富春. 移动荷载下高速铁路轨道-路基的动位移分析[J]. 地震工程学报, 2019, 41(5):1105-1113.UE F C. Dynamic Displacement of the Track-Subgrade of High-speed Railways Subjected to Moving Loads[J]. China Earthquake Engineering Journal, 2019, 41(5):1105-1113.
    [4] 薛富春, 张建民. 移动荷载作用下高速铁路路基动应力的空间分布[J]. 铁道学报, 2016, 38(1): 86-91.UE F C, ZHANG J M. Spatial Distribution of Dynamic Stresses in Embankment of igh-speed Railway under Moving Loads[J]. Journal of The China Railway Society, 2016, 38(1): 86-91.
    [5] Kim, Seong, Min. Vibration and stability of axial loaded beam on, Elastic foundation under moving harmonic loads[J]. Engineering Structures, 2004, 26(1):95-105.
    [6] AuerschL. The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurement sonhigh-speed lines[J]. Journal of Sound and Vibration, 2005, 284(1):103-132.
    [7] 高速铁路设计规范[S]. TB 10621-2014. 北京:中国铁道出版社, 2014: 75-77.
    [8] 周镇勇. 武广客运专线路基动力响应特性试验及数值模拟分析[D]. 长沙: 中南大学, 2010.
    [9] 王福星. 基于ABAQUS对高速铁路环境振动的数值模拟及振动特性分析[D]. 北京:北京交通大学, 2014: 48-51.
    [10] 韩海燕. 软土路基上高速列车引起地面振动的数值模拟分析[D]. 成都:西南交通大学, 2012: 51-67.
    [11] 张千里, 韩自力, 吕宾林. 高速铁路路基基床结构分析及设计方法[J]. 中国铁道科学, 2005, 26(6): 53-57.HANG Q L, HAN Z L, LU B L. Structural Analysis and Design Method for Subgrade Bed of High-Speed Railway[J]. China Railway Science, 2005, 26(6): 53-57.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:72
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-07-19
  • 最后修改日期:2020-12-28
  • 录用日期:2021-01-05
文章二维码