超声波预处理炼油厂浮渣油泥试验研究
CSTR:
作者:
作者单位:

1.常州大学环境与安全工程学院;2.中国石油化工股份有限公司金陵分公司

中图分类号:

X703

基金项目:

中国石油化工股份有限公司科技计划项目(编号:318024-5)


Experimental study on ultrasonic pretreatment of refinery slag sludge
Author:
Affiliation:

1.College of Environmental and Safety Engineering,Changzhou University;2.China Petroleum and Chemical Corporation Jinling Branch

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对炼油厂浮渣油泥(简称“浮渣油泥”)含有大量污油、成分复杂且较难处理等问题,采用超声波法对中石化金陵分公司产生的浮渣油泥进行预处理试验,通过L16(44)正交试验法分析了超声功率、超声温度、超声时间、超声频次对浮渣油泥除油率的影响,利用SPSS 25.0进行误差分析并运用单因素试验细化了正交实验结果,通过红外光谱仪分析了超声前后油泥成份变化情况。试验结果表明:因素的影响顺序为超声功率<超声时间<超声温度<超声频次;当超声功率70 W、超声时间15 min、超声温度55℃、超声频次3次时,其对石油类物质去除率可达32.46%;红外光谱显示超声后油泥对应峰的光谱强度下降,含油量下降明显,芳烃、醇类、烷烃、烯烃类物质等均有减少,表明石油烃长链及高分子有机物碳链被破坏;超声后萃取出的油中烷烃类物质减少,醇类物质增多,说明烷烃的一个氢基被羟基代替,生成对应的醇,相比之烷烃,醇更容易被微生物降解。超声波处理浮渣油泥中机制为:通过机械效应、空化作用及热效应破坏石油烃长链及高分子有机物碳链,降低浮渣油泥黏度,促使油、泥、水三相易于分离,从而降低浮渣油泥中的石油类物质含量。超声波法为物理法,无外加化学药价,处理方法简单,可作为浮渣油泥微生物法深度处理的预处理手段。

    Abstract:

    Given the problems of oil refinery slag sludge ("slag sludge") containing a large amount of dirty oil, complex composition, and challenging to deal with, the pretreatment test of slag sludge produced by Sinopec Jinling Branch was used by ultrasonic means. The influence of ultrasonic power, ultrasonic temperature, ultrasonic time, and ultrasonic frequency on the decontamination rate of slag sludge was analyzed by L16 (44) orthogonal test method. Error analysis was carried out by SPSS 25.0, and the orthogonal experimental results were refined by using the single-factor test. The infrared spectrometer analyzed the change of the composition of the sludge before and after the ultrasonic. The experimental results show that the order of influence factors is ultrasonic power < ultrasonic time < ultrasonic temperature < ultrasonic frequency. When the ultrasonic power is 70 W, the ultrasonic time is 15 min, the ultrasonic temperature is 55℃, and the ultrasonic frequency is three times the removal rate of petroleum substances can reach 32.46%. The infrared spectrum showed that the spectral intensity and oil content of the corresponding peak of oil sludge decreased significantly after ultrasonic. Aromatics, alcohols, alkanes, olefins, and other substances all decreased, indicating that the long chains of petroleum hydrocarbons and the carbon chains of high molecular organic compounds were destroyed. After ultrasonic extraction, the number of alkane substances in the oil decreases, while the amount of alcohol substances increases, indicating that one hydrogen group of an alkane is replaced by a hydroxyl group to produce corresponding alcohol. Compared with alkane, alcohol is more easily degraded by microorganisms. The mechanism of ultrasonic Treatment of scum oil sludge is as follows: through mechanical effect, cavitation effect and thermal effect, the long chain of petroleum hydrocarbon and the high molecular organic carbon chain are destroyed, the viscosity of scum oil sludge is reduced, and the three phases of oil, mud, and water are easily separated, thus reducing the content of petroleum substances in scum oil sludge. The ultrasonic method is a physical method, no additional chemical drug price, the treatment method is simple, can be used as a composite treatment process pretreatment means.

    参考文献
    [1] Hu Guangji, Li Jianbing, Zeng Guangming. Recent development in the Treatment of oily sludge from petroleum industry: A review[J]. Journal of hazardous materials, 2013, 261: 470-490.
    [2] 王永平,宗廷贵,张雷. 含油污泥超声强化热洗处理工艺研究[J]. 石油化工应用,2016,35(10):145-148+153.Wang Yongping, Zong Yangui, Zhang Lei. Study on ultrasonic intensified heating cleaning technique for oily sludge[J]. Petrochemical Industry Application, 2016, 35(10): 145-148+153(in Chinese).
    [3] Gao Y X, Ding R, Chen X, et al. Ultrasonic washing for oily sludge treatment in pilot scale[J]. Ultrasonics, 2018, 90: 1-4.
    [4] 王誉霖. 超声波预处理-生物降解复合工艺处理含油污泥[J]. 环境科学与管理,2011,36(08):108-110+113.Wang Yulin. Treatment of Oily Sludge by Ultrasound and Biodegrading Complex Technique[J]. Environmental Science and Management, 2011, 36(08): 108-110+113(in Chinese).
    [5] 胡馨. 不同黏土矿物质对超声处理含油污泥影响的机理研究[D]. 徐州:中国矿业大学,2014.Hu Xin. Study on the Mechanism of Effects of different clay minerals on the ultrasonic Treatment of oil sluage[D]. Xuzhou: China University of Mining and Technology, 2014(in Chinese).
    [6] 李纪云,李丽,冯成武. 超声一紫外法测定土壤中石油类物质含量[J]. 中国石油大学学报(自然科学版), 1999,23(06):82-83.Li Jiyun, Li Li, Fen Chengwu. Ultrasound ultraviolet method to determine the content of soil oil-type substances[J]. Journal of China University of Petroleum(Edition of Natural Science), 1999, 23(06): 82-83(in Chinese).
    [7] 耿战辉,马秀玲,王飞,等. 冷加工即食棒配方的SPSS正交设计优化[J]. 计算机与应用化学,2014,31(03):353-356.Geng Zhanhui, Ma Xiulin, Wang Fei, et al. Optimization by orthogonal array design on the formula of cold processing bar[J]. Computers and Applied Chemistry, 2014, 31(03): 353-356(in Chinese).
    [8] 李建鹏,陶进转,陈冰. 蔗糖酶水解蔗糖的正交试验与SPSS分析[J]. 化学研究与应用,2019,31(10):1807-1811.Li Jianpeng, Tao Jinnzhuan, Chen Bing. Orthogonal test and SPSS analysis of sucrose hydrolysis by sucrase[J]. Chemical Research and Application, 2019, 31(10): 1807-1811(in Chinese).
    [9] 张晓丹,高满仓,高路军,等. 超声波处理含油污泥室内实验分析[J]. 石油石化节能,2019,09(01):5-8.Zhang Xiaodan, Gao Mancang, Gao Lujun, et al. The experimental analysis of the oil-bearing sludge is treated by ultrasonic waves[J]. Energy Conservation in Petroleum Petrochemical Industry, 2019, 09(01): 5-8(in Chinese).
    [10] 王政,魏莉. 利用SPSS软件实现药学实验中正交设计的方差分析[J]. 数理医药学杂志,2014,27(01):99-102.Wang Zheng, Wei Li. Using SPSS Software Achieve Pharmacy Experiment Orthogonal Design''s Variance Analysis[J]. Journal of Mathematical Medicine, 2014, 27(01): 99-102(in Chinese).
    [11] 杨国明,金吉海,陈松,等. SPSS软件优化苯乙烯-丁二烯-苯乙烯嵌段共聚物改性沥青制备工艺[J]. 石化技术与应用,2019,37(06):387-390.Yang Guoming, Jin Jihai, Chen Song, et al. Optimization of styrene-butadiene-styrene block copolymer modified asphalts preparation process with SPSS software[J]. Petrochemical Technology Application, 2019, 37(06): 387-390(in Chinese).
    [12] Meng Y H, Zhao C C, Liu Q Y, et al. Research on Oily Sludge Treatment by Solvent Extraction[J]. Advanced Materials Research, 2013, 2216(1283): 156-159.
    [13] Patowary R, Patowary K, Kalita M C, et al. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil[J]. International Biodeterioration Biodegradation, 2018, 129: 50-60.
    [14] 段漓童,刘正猛. 红外光谱图的分区[J]. 华北煤炭医学院学报,2006,08(03):336-337.Duan Litong, Liu Zhengmeng. The partition of the infrared spectrograph[J]. Journal of North China University of Science and Technology, 2006, 08(03): 336-337(in Chinese).
    [15] 毕延超. 超声波石油钻采含油污泥处理技术试验研究[J]. 低碳世界,2019,09(03):16-17.Bi Yanchao. The experimental study of oil-bearing sludge treatment technology for ultrasonic oil drilling[J]. Low Carbon World, 2019, 09(03): 16-17(in Chinese).
    [16] 李帅. 大庆油田含油污泥超声波预处理—厌氧产甲烷的研究[D]. 哈尔滨:哈尔滨工业大学,2015.Li Shuai. Research on the pretreatment of daqing oilfield sludge by ultrasound combined with anaerobic methane processing[D]. Haering: Harbin Institute of Technology, 2015(in Chinese).
    [17] Krishnasamy S, Deeksha A, Govindaraj D, et al. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process[J]. Ultrasonics sonochemistry, 2019, 51: 340-349.
    [18] Su B, Huang L, Li S, et al. Chemical–microwave–ultrasonic compound conditioning treatment of highly-emulsified oily sludge in gas fields[J]. Natural Gas Industry B, 2019, 06(04): 412-418
    [19] Fang W, Zhang P, Xu X, et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization[J]. Bioresource Technology, 2014, 168: 167-172.
    [20] 李现瑾, 超声波—生物电解池耦合降解剩余污泥效能及机制研究[D]. 沈阳:东北大学,2017.Li Xianjin, Effectiveness and Mechanism of Combining Ultrasound and Microbial Electrolytic Cells to Degrade Excess Sludge[D]. Shenyang: Northeastern University, 2017(in Chinese).
    [21] 陈皖,张凤娥,武发鑫,等. 改性壳聚糖/超声耦合改善含油浮渣的脱水性能[J]. 中国给水排水,2019,35(01):92-95.Chen Wan, Zhang Fenge, Wu Faxin, et al. Enhancement of Oily Scum Dewaterability by Combined Modified Chitosan /Ultrasonic Process[J]. China Water Wastewater, 2019, 35(01): 92-95(in Chinese).
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:198
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-07-27
  • 最后修改日期:2020-10-30
  • 录用日期:2020-12-11
文章二维码