机器学习方法在滑坡易发性评价中的应用综述
CSTR:
作者单位:

chongqing university

基金项目:

国家重点研发计划重点专项(2019YFC1509605),科技部外专引智项目(G20200022005),重庆市自然科学基金创新群体科学基金(cstc2020jcyj-cxttX0003)


Machine learning techniques and algorithms for landslide susceptibility investigation: a short critical review
Affiliation:

chongqing university

Fund Project:

National Key R&D Program of China (Project No. 2019YFC1509605), High-end Foreign Expert Introduction program (No. G20200022005), Innovation Group Science Fundation of the Natural Science Fundation of Chongqing, China (Grant No.cstc2020jcyj-cxttX0003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    我国山区较多,地形复杂,构造发育,地质灾害隐患分布广泛。作为山区最具灾难性的地质灾害之一,滑坡严重威胁着人民群众生命及财产安全。构建滑坡易发性模型能够量化滑坡发生的可能性,对制定防灾措施、减少潜在风险具有重要作用。由于经验驱动模型难以量化,且往往依赖于主观判断,近年来,滑坡易发性模型的精度与准确度在从经验驱动模型和统计学习向兴起的机器学习方向发展的过程中得到提升。本研究对目前滑坡易发性评价常用的机器学习模型进行了综合性评述,并针对三峡库区的案例研究,对不同的机器学习技术进行了广泛的分析和比较。机器学习模型通过结合实地调查资料和历史数据,可以绘制滑坡易发性地图,帮助制定滑坡减缓策略,根据滑坡易发性预测模型的准确性和效率,本文评价了几种常用算法的优势和局限性,发现与一些常用的滑坡易发性制图方法相比,基于树结构的集成算法模型性能更好。此外,高质量的数据库是十分重要的,一些先进方法(即深度学习算法)的更多应用还有待进一步研究探索。

    Abstract:

    There are many mountainous areas in China, with complex terrain, weak planes and geological structures and wide distribution of geohazards. Landslides are one of the most catastrophic natural hazards occurring in mountainous areas, leading to economic loss and casualties. Landslide susceptibility models are able to quantify the possibility of where landslides are likely to occur, which play a significant role in formulating disaster prevention measures and mitigating future risk. Since opinion-driven models are hard to quantify and often depend on subjective judgments, the accuracy and precision of landslide susceptibility models is now evolving from opinion-driven models and statistical learning toward increasing use of machine learning methods. This study presented critical reviews on current machine learning models for landslide susceptibility investigation, an extensive analysis and comparison between different machine learning techniques (MLTs) from case studies in the Three Gorges Reservoir area (TGRA) are presented. In combination with field survey information as well as historical data, machine learning models were used to map landslide susceptibility and help formulate landslide mitigation strategies. The advantages and limitations of several frequently employed algorithms were evaluated based on the landslide susceptibility predicting accuracy and efficiency. Furthermore, the effect of database quality and quantity is significant, and more applications of some advanced methods (i.e., deep learning algorithms) are yet to be further explored in further researches.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-29
  • 最后修改日期:2021-03-16
  • 录用日期:2021-06-03
文章二维码