不同水泥掺量胶结钙质砂的导热性能及微观结构分析
CSTR:
作者单位:

桂林理工大学

中图分类号:

TU443

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Thermal conductivity and microstructure analysis of cemented calcareous sand with different cement content
Author:
Affiliation:

Guilin University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    钙质砂的导热性能影响着周围土体的传热过程,引起不同环境温度下钙质砂的工程力学性能变化及灾害效应。基于热针法分析了5种不同水泥掺量(Ps=5%、7.5%、10%、12.5%、15%)胶结钙质砂的导热系数变化规律,利用SEM、MIP、NMR技术综合揭示了上述过程中胶结钙质砂微观孔隙结构变化的本质特征,在此基础上阐释了上述热特性演化的微观机理。试验结果表明:(1)胶结钙质砂的导热系数λ随水泥掺量Ps增加而递增,Ps小于10%时,λ呈线性递增,Ps大于10%后,λ增长缓慢;(2)随着水泥掺量Ps递增,胶结钙质砂中孔隙数量越来越少,孔隙占比下降明显,但Ps增加到10%后,总孔隙面积、孔隙数量、孔隙率等微孔隙结构参数变化减缓;(3)不同水泥掺量胶结钙质砂的导热系数λ与其微观孔隙结构变化呈现出负相关关系,本质原因在于凝胶状的水泥水化产物连续填充了胶结钙质砂孔隙,降低了其孔隙率,改善了砂样内部传热,宏观表现为其导热系数λ随水泥掺量Ps的递增而增加。

    Abstract:

    The thermal conductivity of calcareous sand affects the heat transfer process of the surrounding soil , causing the change of engineering mechanical properties and disaster effects of calcareous sand at different ambient temperatures. The thermal conductivity of cemented calcareous sand with five different cement contents (Ps=5%, 7.5%, 10%, 12.5%, 15%) was analyzed based on hot needle method. By means of SEM, MIP and NMR, the essential characteristics of micro-pore structure change of cemented calcareous sand during the above process were revealed. On this basis, the microcosmic mechanism of the evolution of the above thermal characteristics was explained. The results show that: (1)The thermal conductivity of cemented calcareous sand λ increases with the increase of cement content Ps. When Ps is less than 10%, λ increases linearly, and when Ps is more than 10%, λ increases slowly. (2) With the increase of cement content Ps, the number of pores in the cemented calcareous sand becomes less and less, and the proportion of pores decreases obviously. However, when Ps increases to 10%, the change of micro- pore structure parameters such as total pore area, pore number and porosity slows down. (3)The thermal conductivity λ of cemented calcareous sand with different cement content is negatively correlated with the changes of their microscopic pore structure. The essential reason is that the gel-like cement hydration products continuously fill the pores of cemented calcareous sand, reducing its porosity and improving the heat transfer inside the sand sample. The macroscopic performance is that its thermal conductivity λ increases with the increase of cement content Ps.

    参考文献
    [1] 汪稔, 宋朝景, 赵焕庭,等. 南海群岛珊瑚礁工程地质[M]. 北京:科学出版社,1997.WANG Ren, SONG Chao-jing, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing:Science Press,1997. (in Chinese)
    [2] 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000,19(2):1-8.SUN Zong-xun. Engineering properties of coral sands in Nansha Islands[J]. Tropic Oceanology, 2000,19(2):1-8. (in Chinese)
    [3] 袁征, 余克服, 王英辉,等. 珊瑚礁岩土的工程地质特性研究进展[J]. 热带地理, 2016,36(1):87-93.YUAN Zheng, YU Ke-fu, WANG Ying-hui, et al. Research progress in the engineering geological characteristics of coral reefs[J]. Tropical Geography, 2016,36(1):87-93. (in Chinese)
    [4] SHAHNAZARI H, REZVANI R. Effective parameters for the particles breakage of calcareous sands: An experimental study[J]. Engineering Geology, 2013,15: 98-105.
    [5] 吕亚茹, 王冲, 黄厚旭,等. 珊瑚砂细观颗粒结果及破碎特性研究[J]. 岩土力学, 2021,42(2):1-9.LU Ya-ru, Wang Chong, Huang Hou-xu, et al. Particle structure and crushing behavior of coral sand[J]. Rock and Soil Mechanics, 2021,42(2):1-9. (in Chinese)
    [6] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与发展[J]. 岩土力学, 1995,16(4):74-83.LIU Chong-quan, YANG Zhi-qiang, WANG Ren. Current status and development of calcareous soil mechanical properties research[J]. Rock and Soil Mechanics, 1995, 16(4):74-83. (in Chinese)
    [7] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018,40(1):38-45.LIU Han-long, XIAO Peng, XIAO Yang, et al. Experimental study on dynamic characteristics of MICP cemented calcareous sand [J]. Chinese Journal of Geotechnical Engineering, 2018,40(1):38-45. (in Chinese)
    [8] 王丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J].实验力学,2009, 24(2): 133-143.WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental study on the cementitiousness of calcareous sand and its effect on mechanical properties[J]. Experimental Mechanics,2009,24(2):133-143.(in Chinese)
    [9] 郑俊杰, 吴超传, 宋杨, 等. MICP胶结钙质砂的强度试验及强度离散性研究[J/OL]. 哈尔滨工程大学学报, 2020, 41(2): 1-7.ZHENG Jun-jie, WU Chao-chuan, SONG Yang, et al. Strength test and dispersion of strength of MICP cemented calcareous sand[J/OL]. Journal of Harbin Engineering University, 2020,41(2):1-7. (in Chinese)
    [10] 何绍衡, 夏唐代, 李玲玲,等. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019,38(12):2535-2549.HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al. Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 38(12):2535-2549. (in Chinese)
    [11] LIU H, LIU H, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018,58(6):1326-1338.
    [12] 朱长歧, 陈海洋, 孟庆山,等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014,35(7):1831-1836.ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Structural characteristics of pores in calcareous sand grains[J]. Rock and Soil Mechanics, 2014,35(7):1831 -1836. (in Chinese)
    [13] 蒋明镜, 吴迪, 曹培,等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017,39(增刊1):1-5.JIANG Ming-jing, WU Di, CAO Pei, et al. Analysis of the connected pores of calcareous sand based on SEM [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Suppl.1):1-5. (in Chinese)
    [14] 曹培, 丁志军. 基于MIP和CT试验的钙质砂孔隙分布特征研究[J]. 水利与建筑工程学报, 2019,17(3):55-59.CAO Pei, DING Zhi-jun. Pore distribution characteristics of calcareous sand based on MIP and CT tests[J]. Journalof Water Resources and Architectural Engineering, 2019,17(3):55-59. (in Chinese)
    [15] 崔翔, 胡明鉴, 朱长歧,等. 珊瑚砂三维孔隙微观特性研究[J]. 岩土力学, 2020,41(11):1-9.CUI Xiang, HU Ming-jian, ZHU Chang-qi, et al. Study on the microscopic characteristics of three-dimensional pore in coral sand[J]. Rock and Soil Mechanics, 2020,41(11):1-9. (in Chinese)
    [16] TIAN H H, WEI C F, WEI H Z, et al. An NMR-based analysis of soil-water characteristics[J]. Applied Magnetic Resonance, 2014,45(1):49-61.
    [17] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学, 2014,44(3):295-305.TIAN H H, WEI C F. A NMR-based testing and analysis of adsorbed water content[J]. Sci Sin Tech, 2014,44(3): 295-305 (in Chinese)
    [18] 张延军, 于子望, 黄芮,等. 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009,31(2):213-217.ZHANG Yan-jun, YU Zi-wang, HUANG Rui, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. (in Chinese)
    [19] 佘安明, 姚武. 基于低场核磁共振技术的水泥浆体孔结构与比表面积的原位表征[J]. 武汉理工大学学报,2013, 34(10):11-15.SHE An-ming, YAO Wu. Characterization of microstructure and specific surface area of pores in cement paste by low field nuclear magnetic resonance technique[J]. Journal of Wuhan University of Technology, 2013,34(10):11-15. (in Chinese)
    [20] 胡明鉴, 蒋航海, 崔翔,等. 钙质砂电导率与相关性问题初探[J]. 岩土力学, 2017,38(S2):158-162.HU Ming-jian, JIANG Hang-hai, CUI Xiang, et al. Preliminary study on the conductivity and correlation of calcareous sand[J]. Rock and Soil Mechanics, 2017, 38(S2):158-162.(in Chinese))
    [21] 李林香, 谢永江, 冯仲伟,等. 水泥水化机理及其研究方法[J]. 混凝土,2011,(6):76-80.LI Lin-xiang, XIE Yong-jiang, FENG Zhong-wei, et al. Cement hydration mechanism and research methods[J]. Concrete, 2011,(6):76-80. (in Chinese))
    [22] 张丙树, 顾凯, 李金文, 等. 钙质砂破碎过程及其微观机制试验研究. 工程地质学报, 2020, 28(4): 725-733. (ZHANG Bing-shu, Gu Kai, LI Jin-Wen, et al. Study on crushing process and microscopic mechanism of calcareous sand. Journal of Engineering Geology, 2020, 28(4):725 -733.(in Chinese))
    [23] 谷建晓. 胶结钙质砂的微结构特征、力学性质及弹塑性模型研究[D]. 桂林:桂林理工大学,2020.U Jian-xiao. Research of mechanical properties, microstructure and elastoplastic model of cemented calcareous sand[D]. Guilin: Guilin University of Technology, 2020.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:230
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-04-13
  • 最后修改日期:2021-05-13
  • 录用日期:2021-06-03
文章二维码