基于Vine Copula函数的风浪要素联合概率分布模型
CSTR:
作者:
作者单位:

西南交通大学 桥梁工程系

作者简介:

通讯作者:

中图分类号:

U441.4

基金项目:

国家自然科学基金青年(51908472);四川省科学技术厅科技计划项目(2020YJ0080);中国博士后科学基金(2019M663554,2019TQ0271)。


Joint Probability Distribution Model of Wind and Wave with Vine Copula Function
Author:
Affiliation:

Department of Bridge Engineering,Southwest Jiaotong University

Fund Project:

National Natural Science Foundation of China Youth Science Fund Project (Grant No. 51908472), Project of Science and Technology Department of Sichuan Province (2020YJ0080), China Postdoctoral Science Foundation (Grant No. 2019M663554 and 2019TQ0271)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球气候变暖的加剧,极端气候现象的频率和强度均可能加大,这对海岸和近海结构的安全性来说是不利的。本文基于我国东海的连云港海洋观测站实测风浪数据和Vine Copula理论,建立了风浪要素中风速、波高、波浪周期、风向和波向五维随机变量之间的联合概率分布模型。首先,采用极大似然法确定各风浪要素边缘分布模型参数,通过AIC信息准则和均方根误差RMSE进行拟合优度评价,由此来建立风浪要素的边缘分布。其次,采用带有基于残差的高斯似然函数的贝叶斯框架来估计二维Copula函数的参数,结合AIC信息准则进行拟合优度评价并确定最优Copula函数。绘制了最优联合分布概率密度图,并与二维频率直方图进行对比评价模型效果。最后,采用Vine Copula函数建立多维联合概率模型并结合AIC值评价其拟合优度。研究表明,本文建立的Vine Copula模型可以较好的刻画风速、波高、波浪周期、风向和波向五维随机变量之间的联合概率分布。

    Abstract:

    With the intensification of global climate warming, the probabilities and load intensities of extreme weather phenomenon are gradually increasing, which could threaten the safety of coastal and offshore infrastructures. The present study presents a joint probability distribution model of wind speed, wave height, wave period, wind direction and wave direction with Vine Copula function based on monitoring data from Lianyungang Ocean Station in the East China Sea. Firstly, the marginal probability distributions of wind and wave data are determined, in which the AIC criteria and RMSE are employed to select the optimal probability distribution model and the maximum likelihood method is used to obtain the model parameters. Subsequently, the optimal two-dimensional Copula function for wind and wave data is determined through using the AIC criteria, and the model parameters are fitted with a Bayesian framework with a residual-based Gaussian likelihood function. To illustrate the goodness of fit, the binary frequency histogram of the original wind and wave data is compared with the proposed two-dimensional Copula function. Finally, the multi-dimensional joint probability distribution model of wind and wave data is established with the Vine Copula function based on the AIC criteria. The results show that the proposed Vine Copula model is able to describe the joint probability distribution between the wind speed, wave height, wave period, wind direction and wave direction.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-06
  • 最后修改日期:2021-07-05
  • 录用日期:2021-07-31
  • 在线发布日期:
  • 出版日期:
文章二维码