桥梁撞击问题2020年度研究进展
CSTR:
作者单位:

西南交通大学

基金项目:

四川省科技厅应用基础研究(2020YJ0077);中央高校基本科研业务费(2682016CX010);西南交通大学高层次人才队伍建设科研项目(10101X10096077).


New progress and prospect of bridge impact research in 2020
Author:
Affiliation:

Southwest Jiaotong University

Fund Project:

Applied Basic Research Project of Sichuan Science and Technology Department (2020YJ0077), the Science and Technology Innovation Project for the Central Universities (2682016CX010) and the Scientific Research Projects for Building High-level Faculty in Southwest Jiaotong University (10101X10096077).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [73]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    桥梁撞击是既有以及在建桥梁长期面临的一个关键问题,撞击与防护问题研究符合国家发展需求;国内外学者近年来对其关注度也不断增多。继《桥梁撞击问题2019年研究进展》,作者对2020年桥梁船撞、落石冲击和车撞桥梁等三方面的进展进行归纳总结。其中,对于桥梁船撞问题,新规范明确提出了公路桥梁主体结构宜采用基于性能的抗撞设计方法。2020年也发生了一系列采砂船撞击桥梁事故、雅西高速桥梁被落石砸断等,以及多起车桥碰撞事件。作者对这些桥梁撞击事件进行了梳理,并根据个人理解对近一年的相关成果进行分析,之后提出了在未来的研究中需要进一步考虑的问题。

    Abstract:

    Bridge impact is a key problem for existing bridges and bridges under construction for a long time. The research on impact and protection problems meets the needs of national development. In recent years, scholars at home and abroad have paid more and more attention to bridge impact, and conducted a lot of researches. Following the New Progress and Prospect of Bridge Impact Research in 2019, the author continues to summarize the progress in 2020 in three aspects, such as bridge ship collision, rockfall impact and vehicle collision bridge. Among them, for the bridge ship collision problem, the new code clearly proposes that the main structure of highway bridge should adopt the performance-based anti-collision design method. In 2020, a series of sand mining vessel collision accidents, the broken of Yaxi high-speed bridge, and many vehicle bridge collision events have occurred. The author sortes these bridge impact events, analyzes and summarizes the relevant achievements in the past year according to personal understanding, and then puts forward the problems that need to be further considered in the future research.

    参考文献
    [1] 中华人民共和国公安部. 公安部部署开展打击长江流域黑恶势力非法采砂违法犯罪专项行动取得阶段性成果 [EB/OL]. https://www.mps.gov.cn/n2254314/n6409334/c6830966/content.html, 2019.10.0.The Ministry of Public Security of the Pepole’s Republic of China. The Ministry of Public Security has launched a special action to crack down on the illegal sand mining crimes committed by the evil forces in the Yangtze River Basin, and achieved phased results [EB/OL]. https://www.mps.gov.cn/n2254314/n6409334/c6830966/content.html, 2019.10.10.
    [2] JTG/T 3360-02-2020, 公路桥梁抗撞设计规范 [S]. 中华人民共和国交通运输部, 2020.TG/T 3360-02-2020, Code for anti collision design of Highway Bridges [S]. Ministry of Transport of the Pepole’s Republic of China, 2020.
    [3] ZHOU X, ZHANG W, GAO Y. A study of the cumulative impact forces of stainless-steel reinforced concrete pier[J]. International Journal of Steel Structures, 2020, 20(1): 13-22.
    [4] GHOLIPOUR G, ZHANG C, MOUSAVI A A. Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision[J]. Marine Structures, 2020, 69: 102662.
    [5] 邓超,温永华,吴琼.船桥撞击力理论公式与数值模拟对比研究[J].福建交通科技,2020,(3):104-108.ENG C, WEN Y, WU Q. Comparative study on theoretical formula and numerical simulation of impact force of ship bridge[J]. Fujian Transportation Science and Technology, 2020, (3): 104-108.
    [6] 戴志伟,方海,刘伟庆,韩娟,孙慧明.考虑墩顶约束作用的桥墩船撞力学模型及其响应[J].南京工业大学学报(自然科学版),2020,42(03):366-372.AI ZH, FANG H, LIU W, et al. A mechanical model and analysis of the ship-bridge collision system considering the pier top constraint effect[J]. Journal of Nanjing Tech University ( Natural Science Edition) ,2020,42(03):366-372.
    [7] 中国公路学报编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(02): 1-97.ditorial Department of China Journal of Highway and Transport. Review on China’s Bridge Engineering Research:2021[J]., China Journal of Highway and Transport, 2021, 34(02):1-97.
    [8] GUO J, HE J. Dynamic response analysis of ship-bridge collisions experiment[J]. Journal of Zhejiang University-Science A, 2020, 21(7): 525–534.
    [9] GUO X, ZHANG C, CHEN Z. Dynamic performance and damage evaluation of a scoured double-pylon cable-stayed bridge under ship impact[J]. Engineering Structures, 2020, 216: 110772.
    [10] 张琛.冲刷和船撞共同作用下桥梁结构动力响应研究[D].扬州:扬州大学,2020.HANG C. Dynamic response of bridge under flood-induced scour and vessel impact [D]. Yangzhou: Yangzhou University, 2020.
    [11] 陈伟. 桥梁在冲刷和船撞共同作用下的冲击易损性分析[D]. 扬州: 扬州大学, 2020.HEN W. Impact fragility analysis of a bridge under scour and vessel impact [D]. Yangzhou: Yangzhou University, 2020.
    [12] OPPONG K, SAINI D, SHAFEI B. Vulnerability assessment of bridge piers damaged in barge collision to subsequent hurricane events[J]. Journal of Bridge Engineering, 2020, 25(8): 04020051.
    [13] ZHANG W, LIU S, LUO W, et al. A new approach for probabilistic risk assessment of ship collision with riverside bridges[J]. Advances in Civil Engineering, 2020: 8357494.
    [14] FAN W, SUN Y, YANG C, et al. Assessing the response and fragility of concrete bridges under multi-hazard effect of vessel impact and corrosion[J]. Engineering Structures, 2020, 225: 111279.
    [15] WANG W, MORGENTHAL G, HELMRICH M. Damage identification of a single RC column subjected to barge impact based on optimization strategies[J]. Ocean Engineering, 2020, 216: 107979.
    [16] 刘少康.船桥碰撞动力响应评估与船撞力预测方法研究[D].大连: 大连海事大学, 2020.IU S. Research on dynamic response evaluation and impact force prediction method of ship-bridge collision[D]. Dalian: Dalian Maritime University, 2020.
    [17] 宋明康.船舶撞击作用下桥梁结构时变可靠度研究[D]. 济南:山东建筑大学,2020.ONG M. Research on time-dependent reliability of bridge structure under vessel collision [D]. Jinan: Shandong Jianzhu University,2020.
    [18] 林志丹.船舶撞击桥梁事故原因与教训浅析[J].公路交通科技,2020(6):311-313.IN Z. Analysis on causes and lessons of ship bridge collision accident [J]. Highway Traffic Science and Technology,2020(6):311-313.
    [19] 陈兵,许肇峰,魏斌等.牛湾特大桥通航安全评估[J].广东公路交通,2020,46(1):35-42,50.HEN B,XU Z,WEI B,WANG Y. Navigation Safety Assessment of Niuwan Bridge [J]. Guangdong Highway Communications, 2020, 46(1):35-42,50.
    [20] 郭健,何威超.跨海桥梁船撞风险综合评估[J].海洋工程,2020,38(05):125-133.UO J,HE W. Comprehensive risk assessment of ship collision with sea-crossing bridge [J]. The Ocean Engineering, 2020, 38(05): 125-133.
    [21] 朱俊羽,方海,韩娟等.非通航孔桥防船撞拦截系统的研究概述与实例分析[J].南京工业大学学报:自然科学版,2020,42(5):634-641.HU J,FANG H,HAN J, et al. Research summary and a case study of interception systems on non-navigable bridge [J]. Journal of Nanjing Tech University (Natural Science Edition) , 2020, 42(5): 634-641.
    [22] 朱俊羽,祝露,韩娟,等.某航道桥下部结构受船舶撞击后安全性能评估及修复[J].世界桥梁,2020,48(01):87-92.HU J, ZHU L, HAN J, et al. Safety evaluation for substructure of a navigational channel bridge after ship collision and repairs [J]. World Bridge, 2020, 48(01):87-92.
    [23] FAN W, ZHANG Z, HUANG X, et al. A simplified method to efficiently design steel fenders subjected to vessel head-on collisions[J]. Marine Structures, 2020, 74: 102840.
    [24] 罗强,刘榕,樊伟等.钢-复合材料组合防撞装置在不同船舶撞击下的性能分析[J].桥梁建设,2020,50(1):67-73.UO Q, LIU R, FAN W, et al. Performance of Anti-Collision Device made from steel and composite material under different types of vessal collision [J]. Bridge Construction, 2020, 50(1): 67-73.
    [25] 汪银根.通航桥梁抗撞能力评估及防撞设施方案选择[J].福建建材,2020(11):65-67.ANG Y. Evaluation of anti-collision ability of navigable bridges and selection of anti-collision facilities [J]. Fujian Building Materials, 2020(11): 65-67.
    [26] MANOHAR T, SURIBABU C R, MURALI G, et al. A novel steel-PAFRC composite fender for bridge pier protection under low velocity vessel impacts[J]. Structures, 2020, 26: 765–777.
    [27] SHAN C. Analysis of collision performance of anticollision box made of steel–polyurethane sandwich plates[J]. Journal of Constructional Steel Research, 2020, 175: 106357.
    [28] 陈巍,耿波,沈锐利等.转筒式钢-复合材料套箱防船撞性能研究[J].防灾减灾工程学报,2020,40(06):936-944.HEN W, GENG B, SHEN R, et al. Study on anti?collision performance of rotary cylinder typed steel composite boxed cofferdam [J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(06): 936-944.
    [29] ZHOU L, LI H, WEI J, et al. Design and simulation analysis of a new type of assembled uhpc collision avoidance[J]. Applied Sciences, 2020, 10(13): 4555.
    [30] 郁嘉诚,韩娟,祝露,等.隔离墩与自浮结构相组合的桥梁防船撞系统方案与评估[J].南京工业大学学报(自然科学版),2020,42(05):626-633.U J, HAN J, ZHU L, et al. Design and evaluation of anti-ship collision system combining isolation pier and floating structure [J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(05): 626-633.
    [31] 潘晋,黄义飞,夏天,等.基于AIS数据的桥梁防船撞结构冲击响应分析[J].桥梁建设,2020,50(01):32-37.AN J, HUANG Y, XIA T, et al. Analysis of impact responses of vessel collision protection structure for bridges based on AIS data [J]. Bridge Construction,2020,50(01):32-37.
    [32] 毛德涵,余葵,刘洋,等.拱形防撞带模型设计与相似性检验[J].科学技术与工程,2020,20(26):10907-10911.ao Dehan, Yu Kui, Ma Xiqin, et al. Model design and similarity test of arched anti-collision belt [J]. Science Technology and Engineering, 2020, 20( 26) : 10907-10911.
    [33] WANG W, MORGENTHAL G, KRAUS M. Numerical evaluation of a novel crashworthy device for pier protection from barge impact[J]. Engineering Structures, 2020, 212: 110535.
    [34] PEDERSEN P T, CHEN J, ZHU L. Design of bridges against ship collisions[J]. Marine Structures, 2020, 74: 102810.
    [35] WANG C M, DAO V, KITIPORNCHAI S.EASEC16: Proceedings of the 16th east asian-pacific conference on structural engineering and construction, 2019 [M]. Singapore: Springer Singapore, 2021, 101.
    [36] 夏烨,陈李沐,王君杰,孙利民.基于SSD的桥梁主动防船撞目标检测方法与应用[J].湖南大学学报(自然科学版),2020,47(03):97-105.IA Y, CHEN L, WANG J, et al. Single shot multibox detector based vessel detection method and application for active anti-collision monitoring [J]. Journal of Hunan University (Natural Sciences), 2020,47(03):97-105.
    [37] 闫兴非,张涛,侯伟等.G1501跨泖港大桥主动防撞系统设计[J].城市道桥与防洪,2020(10):65-69.AN X, ZHANG T, HOU W, et al. Design of active collision avoidance system for g1501 expressway crossing maogang bridge [J]. Urban Roads Bridges Flood Control ,2020(10):65-69.
    [38] 徐一超,张宇峰.基于健康监测系统的桥梁船撞报警指标研究与应用[J].黑龙江交通科技,2020,43(10):104-105+108.u Y, Zhang Y. Research and application of bridge ship collision alarm index based on health monitoring system [J]. Heilongjiang Traffic Science and Technology, 2020, 43(10): 104-105+108.
    [39] 何侃.基于多源信息融合的高等级航道桥梁主动防船撞系统[J].中国水运,2020(10):81-83.E K. Active ship collision prevention system for bridges in high-class waterway based on multi-source information fusion [J]. China Water Transport, 2020(10): 81-83.
    [40] 张雷,马广,王江波.渤海海峡跨海桥梁方案研究[J].铁道标准设计,2020,64(S01):99-103.HANG L, MA G, WANG J. Study on the scheme of bridge across bohai strait [J]. Railway Standard Design, 2020, 64(S01): 99-103.
    [41] 钟汉清,吕梁,辜友平,等.基于Hertz理论的落石撞击桥墩冲击力计算公式及参数研究[J].中外公路,2020,40(01):113-119.hong H, Lu L, Gu Y, et al. Study on calculation formula and parameter of impact force of rock fall impact piers based on hertz theory [J]. Journal of China and Foreign Highway, 2020, 40(01):113-119.
    [42] 王翔,牌立芳,吴红刚.拉林铁路变坡面倾角崩塌落石对桥梁结构破坏作用的模拟分析与试验研究[J].岩石力学与工程学报,2020,39(08):1622-1633.ANG X, PAI L, WU H. Simulation analysis and experimental study on the damage of bridge structure caused by tilt collapse and rockfall on the slope of Lalin railway [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(08): 1622-1633.
    [43] 孙宗磊,杨少军,刘琛, 等. 基于UHPC板和EPS耗能层的落石冲击力研究[J/OL]. 铁道标准设计: 1-5 [2020-11-04]. https://doi.org/10.13238/j.issn.1004-2954.202008110006.UN Z, YANG S, LIU C,et al. Study on rockfall impact force based on UHPC plate and EPS energy dissipation layer [J/OL] Railway?? Standard?? Design: 1-5 [2020-11-04].https://doi.org/10.13238/j.issn.1004-2954.202008110006.
    [44] 杨少军,刘琛,高明昌.桥梁防治危岩落石的设计标准探讨[J].铁道标准设计, 2020, 64(S1): 74-79.ANG S, LIU C, GAO M. Study on design standard of bridge for preventing dangerous rockfall [J]. Railway Standard Design, 2020, 64(S1): 74-79.
    [45] 方钱宝,张晓强.桥隧相连落石防护新型结构动力响应分析[J].高速铁路技术, 2019, 10(06): 63-68.ANG Q, ZHANG X. Study on the dynamic behavior of new type rockfall protection structure at the junction of the bridge and tunnel [J]. High Speed Railway Technology, 2019, 10(06): 63-68.
    [46] 余志祥,张丽君,骆丽茹,等.韧性挑篷防护网系统抗冲击性能研究[J].岩石力学与工程学报,2020,39(12):2505-2516.U Z, ZHANG L, LUO L, et al. Study on impact resistance of a resilient steel canopy protection system [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2505-2516.
    [47] 张佳宁,解珂,阳波,胡锦鹏,周鹏.山区桥梁双柱式高墩受滚石撞击的影响分析[J].科学技术创新,2020(03):114-115.HANG J, XIE K, YANG B, et al. Analysis on the impact of rolling stones on double pier of bridge in mountain area [J]. Science and Technology Innovation, 2020(03): 114-115.
    [48] 陆科林. 新型管翼缘组合梁桥多工况静动力性能研究[D].甘肃: 兰州理工大学,2020.U K. Study on the static and dynamic performance of a new type of composite beam bridge with pipe flange under multiple working conditions [D]. Gan Su: Lanzhou University of Technology, 2020.
    [49] ZHANG C, GHOLIPOUR G, MOUSAVI A A. State-of-the-art review on responses of RC structures subjected to lateral impact loads[J]. Archives of Computational Methods in Engineering, 2020.
    [50] OZDAGLI A I, MOREU F, XU D, et al. Experimental analysis on effectiveness of crash beams for impact attenuation of overheight vehicle collisions on railroad bridges[J]. Journal of Bridge Engineering, 2020, 25(1): 04019133.
    [51] LI R W, ZHOU D Y, WU H. Experimental and numerical study on impact resistance of RC bridge piers under lateral impact loading[J]. Engineering Failure Analysis, 2020, 109: 104319.
    [52] CHEN L, WU H, LIU T. Shear performance evaluation of reinforced concrete piers subjected to vehicle collision[J]. Journal of Structural Engineering, 2020, 146(4): 04020026.
    [53] WU M, JIN L, DU X. Dynamic responses and reliability analysis of bridge double-column under vehicle collision[J]. Engineering Structures, 2020, 221: 111035.
    [54] 唐杨. 基于ANSYS的钢桁架桥汽车撞击分析[J].石家庄铁路职业技术学院学报, 2020, 19(01): 55-59.ANG Y. Automobile impact analysis of steel truss bridge based on ANSYS [J]. Journal Of Shijiazhuang Institute of Railway Technology, 2020, 19(01): 55-59.
    [55] 王向阳,吴琼,张林凯.基于LS-DYNA的车-桥墩碰撞及可靠度研究[J].公路交通科技,2020,37(05):64-72.ANG X, WU Q, ZHANG L. Study on vehicle-pier collision and reliability based on LS-DYNA [J]. Journal of Highway and Transportation Research and Development, 2020, 37(05): 64-72.
    [56] SHARMA R, SILVESTRI DOBROVOLNY C, HURLEBAUS S, et al. Adequacy of Manitoba concrete bridge rail during truck platoon impacts and associated occupant risks[J]. International Journal of Crashworthiness, 2020: 1–11.
    [57] WANG S, SUN Q, YANG J. Effect of vehicle quality and speed on the impact characteristics of an overpass bridge pier[J]. Civil Engineering Journal, 2020, 29(2): 192–203.
    [58] PAN J, FANG H, XU M C, et al. Dynamic performance of a sandwich structure with honeycomb composite core for bridge pier protection from vehicle impact[J]. Thin-Walled Structures, 2020, 157: 107010.
    [59] PAN J, FANG H, XU M C, et al. Study on the performance of energy absorption structure of bridge piers against vehicle collision[J]. Thin-Walled Structures, 2018, 130: 85–100.
    [60] LU C, ZHANG Z, TAN W, et al. Optimization design of highway cable barriers based on collision safety consideration[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3507–3520.
    [61] 廖福勇,王永峰,贾小龙.基于刚度匹配的桥梁防车撞装置技术研究及应用[J].中外公路,2020,40(06):332-336.IAO F,WANG Y, JIA X. Research and application of bridge anti vehicle collision device technology based on stiffness matching [J]. Journal of China and Foreign Highway, 2020, 40(06): 332-336.
    [62] LI Y, DONG Y, FRANGOPOL D M, et al. Long-term resilience and loss assessment of highway bridges under multiple natural hazards[J]. Structure and Infrastructure Engineering, 2020, 16(4): 626–641.
    [63] KIM K, LEE J. Fragility of bridge columns under vehicle impact using risk analysis[J]. Advances in Civil Engineering, 2020, 2020: 1–14.
    [64] PETRINI F, GKOUMAS K, ROSSI C, et al. Multi-hazard assessment of bridges in case of hazard chain: state of play and application to vehicle-pier collision followed by fire[J]. Frontiers in Built Environment, 2020, 6: 580854.
    [65] CHEN L, WU H, LIU T. Vehicle collision with bridge piers: A state-of-the-art review[J]. Advances in Structural Engineering, 2021, 24(2): 385–400.
    [66] 韩艳,王龙龙,刘志浩.桥墩受车辆撞击研究综述[J].城市道桥与防洪,2020(05):271-275+31.AN Y, WANG L, LIU Z. Review of research on bridge piers subjected to vehicle collision [J]. Urban Roads Bridges Flood Control, 2020, (05): 271-275+31.
    [67] LI R W, WU H, YANG Q T, et al. Vehicular impact resistance of seismic designed RC bridge piers[J]. Engineering Structures, 2020, 220: 111015.
    [68] LAI J, XU J, WANG P, et al. Numerical investigation on the dynamic behaviour of derailed railway vehicles protected by guard rail[J]. Vehicle System Dynamics, 2020: 1–22.
    [69] 吕思雨,钟睦,鲁寨军等.基于有限元仿真的列车-桥梁防护墙碰撞研究[J].铁道科学与工程学报,2020,17(1):8-15.V S, ZHONG M, LU S, et al. Study on train-bridge protecting wall collision based on finite element simulation [J]. Journal of Railway Science and Engineering, 2020, 17(1): 8-15.
    [70] 樊伟,毛薇,庞于涛,何广.钢筋混凝土柱式桥墩抗车撞可靠度分析研究[J].中国公路学报,2021,34(02):162-176.AN W, MAO W, PANG Y, et al. Reliability analysis of reinforced concrete column bridge pier subjected to vehicle collisions[J]. China Journal of Highway and Transport, 2021, 34(02): 162-176.
    [71] 李梁. 基于神经网络的车辆-桥墩撞击力研究[D].绵阳: 西南科技大学,2020.I L. Vehicle-Pier impact force research based on neural network [D]. Mian Yang: Southwest University of Science and Technology, 2020.
    [72] 黄道斌. 碳纤维拉索的温度效应及车撞响应研究[D].长沙: 湖南大学, 2019.UANG D. Investigation on temperature effect and vehicle impact response of CFRP cables [D]. Chang Sha: Hunan University, 2019.
    [73] 程龙树.大跨度连续梁拱组合桥在车辆撞击吊杆损伤后的结构性能研究[D]. 合肥: 安徽建筑大学,2020.CHENG L. Research on structural performance of long-span continuous girder-arch composite bridge after vehicle impact suspension damage [D]. He Fei: Anhui Jianzhu University, 2020.2
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:334
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-06
  • 最后修改日期:2021-07-06
  • 录用日期:2021-07-08
文章二维码