桥梁工程可靠度2020年度研究进展
CSTR:
作者:
作者单位:

西南交通大学土木工程学院桥梁工程系

基金项目:

国家自然科学基金(51878579)


State-of-the-art Review of Reliability in Bridge Engineering in 2020
Author:
Affiliation:

School of Civil Engineering,Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于自身固有属性的不确定性以及所处环境的复杂性,桥梁在设计、施工、运营等不同阶段都需要具备足够的可靠性。为了解桥梁工程可靠度研究与应用在2020年的最新动态,查阅文献对相关理论方法、不同阶段或环节的科研内容和成果进行归纳。在桥梁可靠度理论和方法方面,引入GPR模型、径向基神经网络等方式得到隐式结构功能函数,或引入Copula理论考虑多失效模式概率的关系;大量学者采用概率可靠性和非概率可靠性方法、蒙特卡罗数值模拟、时变可靠度理论等进行可靠性评估。既有桥梁的技术状况及可靠度仍然是国内外桥梁工程领域的热点,自然环境条件下桥梁抗力与外荷载的时变模型是桥梁时变可靠度分析与寿命预测的重点。可靠度理论及分析方法在桥梁工程设计中得到逐步的发展,考虑动态荷载作用随机性与结构参数随机性的动力可靠度研究与应用越来越多。

    Abstract:

    Due to the uncertainty of the inherent properties and the complexity of the environment, bridges need to have sufficient reliability in different stages of design, construction, and operation. In order to understand the latest developments in the research and application of bridge engineering reliability in 2020, the relevant theoretical methods, scientific research content and results at different stages are summarized through literature review. In terms of the bridge reliability theory and methods, GPR models and radial basis neural networks are introduced to obtain the implicit structural function functions. Copula theory is introduced to consider the relationship between the probability of multiple failure modes. The probabilistic reliability and non-probabilistic reliability Methods, Monte Carlo simulation, time-varying reliability theory, etc. are used for reliability evaluation. The technical status and reliability of existing bridges are still hot spots in the field of bridge engineering at home and abroad. The time-varying model of bridge resistance and external load under environmental conditions is the focus of the time-varying reliability analysis and the life prediction of bridges. Reliability theory and analysis methods have been gradually developed in bridge engineering design. There are more and more dynamic reliability studies and applications that consider the randomness of dynamic load action and the randomness of structural parameters.

    参考文献
    [1] 黎恩华, 陈忠宇, 林毛. 基于GRP的PC连续梁桥体系可靠度分析[J]. 研究与探索, 2020. 2020, 34(02): 194-196.
    [2] 何启龙, 邬晓光, 李艺林, 等. 基于RBF-SVM的拼宽预应力T梁桥抗弯可靠度分析[J]. 武汉大学学报(工学版), 2020, 53(05): 424-429.
    [3] 李晓妮. 混凝土桥梁耐久性评估新方法[J]. 交通世界, 2020(26): 131-132.
    [4] 王敏容, 樊建平, 胡隽. 非概率可靠性在轴压柱加固评估中的应用[J]. 土木工程与管理学报, 2020, 37(01): 87-92.
    [5] 马涛. 基于非概率可靠度的桥梁桩基承载能力安全系数研究[J]. 黑龙江交通科技, 2020, 43(09): 142-143.
    [6] Liu H B, Wang X R, Tan G J, et al. System reliability evaluation of a bridge structure based on multivariate copulas and the AHP–EW method that considers multiple failure criteria[J]. Applied Sciences, 2020, 10(4): 1399.
    [7] 罗辉, 李彤, 熊凯文. 基于Copula理论的桥梁可靠度计算[J]. 土木工程与管理学报, 2020, 37(4): 1-7.
    [8] Tan G J, Kong Q W, Wang? L L, et? al. Reliability evaluation of hinged slab bridge considering hinge joints damage and member failure credibility[J]. Applied Sciences, 2020, 10(14): 4824
    [9] 黄海新, 孙文豪, 程寿山. 钢筋混凝土T梁桥模块化集成设计优化与实践[J]. 混凝土, 2020(06): 152-159.
    [10] Zhang Z H, Li W B, Ding Z X, et al. An approach to the selection of target reliability index of Cable-stayed bridge''s main girder based on optimal structural parameter ratio from cost-benefit analysis[J]. Structures, 2020, 28: 2221-2231.
    [11] 韦尧兵, 张如鹏, 刘俭辉, 等. 应力-强度干涉理论在对接焊缝中的应用[J]. 兰州理工大学学报, 2020, 46(06): 168-172.
    [12] Wang Y, Duan K K, Liu L J, et al. Reliability analysis of large span cable-stayed bridges based on support vector machine[J]. IOP conference series. Earth and environmental science, 2020, 446(5): 052103.
    [13] 王识嵎, 梁力. 基于逆可靠度的单轨梁容许应力计算方法[J]. 铁道标准设计, 2020, 64(3): 91-98.
    [14] 樊健生, 刘诚, 刘宇飞. 钢-混凝土组合梁桥温度场与温度效应研究综述[J]. 中国公路学报, 2020, 33(04): 1-13.
    [15] 黎峰, 彭孝旺. 刚构桥疲劳设计要点[J]. 交通世界, 2020(25): 140-141.
    [16] Flanigan K A, Lynch J P, Ettouney M. Probabilistic fatigue assessment of monitored railroad bridge components using long-term response data in a reliability framework[J]. Structural Health Monitoring, 2020, 19(6): 2122-2142.
    [17] Han Y, Li K, Cai C S, et al. Fatigue reliability assessment of long-span steel-truss suspension bridges under the combined action of random traffic and wind loads[J]. American Society of Civil Engineers, 2020, 25(3): 04020003.1-04020003.10.
    [18] 朱金, 吴梦雪, 尹力, 等. 随机车流-风联合作用下沿海大跨度斜拉桥拉索疲劳寿命预测[J]. 中国公路学报, 2020, 33(11): 182-194.
    [19] 刘陆平. 基于不同规范的连续梁桥确定性及可靠性对比分析[J]. 城市道桥与防洪, 2020(2): 159-162.
    [20] 刘林, 郎凯. 大件运输过程中桥梁技术状况检测与评估[J]. 城市道桥与防洪, 2020(06): 169-171.
    [21] 高文博, 袁阳光, 黄平明, 等. 大件运输车载下考虑强度退化过程的钢绞线斜拉索安全评估[J]. 中国公路学报, 2020, 33(08): 169-181.
    [22] Lu N W, Liu Y, Noori M, et al. System reliability assessment of cable-supported bridges under stochastic traffic loads based on deep belief networks[J]. Applied Sciences, 2020, 10(22): 8049.
    [23] Hou N, Sun L, Chen L. Depth evaluation of submerged pile bents[J]. American Society of Civil Engineers, 2020, 34(01): 06019003.
    [24] 袁阳光, 韩万水, 李光玲, 等. 考虑非平稳因素的混凝土桥梁概率极限状态评估[J]. 工程力学, 2020, 37(08): 167-178.
    [25] Wang C. A stochastic process model for resistance deterioration of aging bridges[J]. Advances in Bridge Engineering, 2020, 1(1) : 1-9.
    [26] 程健, 黎恩华. 基于粒子群算法的桥梁多目标维护决策优化[J]. 工程与建设, 2020, 34(04): 767-769.
    [27] Shahbaznia M, Mirzaee A, Raissi Dehkordi M.? A new model updating procedure for reliability-based damage and load identification of railway bridges[J]. KSCE Journal of Civil Engineering, 2020, 24(3): 890-901.
    [28] Zhou G D, Yi T H, Li W J, et al. Standardization construction and development trend of bridge health monitoring systems in China [J]. Advances in Bridge Engineering, 2020, 1, 13.
    [29] 樊学平, 杨光红, 肖青凯, 等. 考虑安全性的桥梁主梁体系可靠性动态藤Copula预测[J]. 同济大学学报(自然科学版), 2020, 48(02): 165-175.
    [30] Dan D, Yu X, Yan X, et al. Monitoring and evaluation of overturning resistance of box girder bridges based on time-varying reliability analysis[J]. American Society of Civil Engineers, 2020, 34(01): 04019101.
    [31] 李松辉, 李灿, 聂瑞锋, 等. 考虑抗力修正系数和静载试验效率的RC简支梁桥限载取值[J].土木工程学报, 2020, 53(10): 99-105.
    [32] 王常青. 运营期混凝土桥梁碳化深度统计分析[J]. 交通世界, 2020(26): 108-109.
    [33] 张若男, 蔺鹏臻, 保琛, 等. 铁路56 m简支箱梁的碳化寿命预测[J]. 铁道建筑, 2020, 60(9): 26-30.
    [34] Ma Y, Guo Z, Wang L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J], 2020, 146(7).
    [35] Gao Y H. Influence of chloride ion corrosion on the performance of reinforced concrete beam bridge in offshore environment[J]. Archives of Engineering, 2020, 66(02): 253-265.
    [36] Heo W. Performance-based reliability estimates for highway bridges considering previous inspection data[J]. Applied Sciences, 2020, 10(5): 1873.
    [37] 陈树辉, 呼明亮, 朱三凡, 等. 基于退化因素机理的桥梁技术状况退化预测模型研究[J]. 市政技术, 2020, 38(3): 54-60.
    [38] 黄勇, 马永, 刘经伟, 等. 联合时变可靠度与成本优化的桥梁构件升级改造策略[J]. 公路交通科技(应用技术版), 2020, 16(10): 209-213.
    [39] 袁阳光, 韩万水, 谢青, 等. 非平稳车载及抗力劣化进程下混凝土桥梁时变可靠性评估[J]. 中国公路学报, 2020, 33(03): 85-96.
    [40] 陈龙, 黄天立. 基于贝叶斯更新和逆高斯过程的在役钢筋混凝土桥梁构件可靠度动态预测方法[J]. 工程力学, 2020, 37(4): 186-195.
    [41] 邓露, 王涛, 何钰龙. 车辆轴限对钢筋混凝土桥梁可靠度和加固费用的影响[J]. 中国公路学报, 2020, 33(5): 92-100.
    [42] Kia S, Shahhosseini V, Sebt M H, et al. Reliability-based life cycle assessment of the concrete slab in bridges[J]. Civil and Environmental Engineering, 2020, 16(1): 170-183.
    [43] Kim S, Ge B, Frangopol D M. Optimum target reliability determination for efficient service life management of bridge networks[J]. American Society of Civil Engineers, 2020, 25(10): 04020087.
    [44] Wu Z Y, Luo Z. Life-cycle system reliability-based approach for bridge pile foundations under scour conditions[J]. KSCE Journal of Civil Engineering, 2020, 24(2): 412-423.
    [45] Yuan H H, Hou W, Ren L P, et al. Reliability assessment and residual life estimation of concrete girder bridges strengthened by carbon fiber during the service stage[J]. Advances in Civil Engineering, 2020, 2020: 1-11.
    [46] 曹智骅, 杨林恺. 粘贴钢板法加固桥梁可靠度分析[J]. 广东公路交通, 2020, 46(05): 43-46.
    [47] Jin S, Feng H D. Reliability assessment of a curved heavy-haul railway track-bridge system[J]. Structure and infrastructure engineering, 2020, 16(3): 465-480.
    [48] 姜保宋, 周志勇, 唐峰.桥梁颤振临界风速的概率密度演化计算[J]. 哈尔滨工业大学学报, 2020, 52(03): 59-67.
    [49] Soleimani F. Propagation and quantification of uncertainty in the vulnerability estimation of tall concrete bridges[J]. Engineering Structures, 2020, 202: 109812.
    [50] 周敉, 赵威, 石雄伟, 等. 高烈度软土场地桥梁地震与冲刷联合作用效应研究[J]. 振动与冲击, 2020, 39(08): 88-98.
    [51] 梅建松, 袁涌. 杆系拱桥随机地震响应及抗震可靠度分析[J]. 公路工程, 2020, 45(4): 131-135.
    [52] 王向阳, 吴琼, 张林凯. 基于LS-DYNA的车-桥墩碰撞及可靠度研究[J]. 公路交通科技, 2020, 37(5).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:289
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-07
  • 最后修改日期:2021-07-07
  • 录用日期:2021-07-08
文章二维码