2020年度进展:深水大跨桥梁施工技术进展
CSTR:
作者:
作者单位:

西南交通大学土木工程学院

中图分类号:

U445.4


Progress in construction technology of deep-water long-span bridges in 2020
Author:
Affiliation:

School of Civil Engineering,Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着我国经济实力的不断增强,科学技术水平的显著提升,桥梁工程正朝着跨度更大,基础更深,桥塔更高的方向快速发展。在此过程中,桥梁建设者遇到了很多崭新的难题,例如:深水基础浮运下沉过程中精准定位、超大型沉井基础防冲刷、大直径钻孔桩施工、大跨度斜拉桥索塔锚固构造优化、超高桥塔大体积混凝土水化热温度控制、超高桥塔新型液压爬模系统开发等问题,这些问题已成为影响深水大跨桥梁安全顺利施工、长期可靠运营的关键问题。为促进深水大跨桥梁施工技术的发展,提高深水大跨桥梁施工人员解决相关问题的能力,并为深水大跨桥梁的推广提供技术支持,围绕深水大跨桥梁施工面临的上述关键问题,对2020年国内外研究者的相关研究进展及成果进行了详细分析与汇总。

    Abstract:

    With the increasement of economic strength and significant improvement in science and technology, bridge engineering is developing rapidly towards larger span, deeper foundation and higher tower. Many new problems appears to bridge builders, such as: accurate positioning of deep water foundation during floating and sinking, anti-erosion of super-large caisson foundation, large diameter drilled pier construction, optimization of anchoring structure in long-span cable-stayed bridge tower, temperature control of hydration heat for mass concrete of ultrahigh bridge tower, development of new hydraulic climbing template system for ultrahigh bridge tower. These are the key problems for safe and smooth construction and long-term reliable operation for deep-water long-span bridges. The development and achievements gained in 2020 related to those key problems are analyzed and summarized to improve the construction technology, the problem-solving capacity of the builders and to give technical support for the promotion of deep-water long-span bridges.

    参考文献
    [1] 程松. 桥梁工程的发展现状及技术创新[J]. 科技创新与应用, 2018, 241(21): 151-152.CHENG S. Development Status and Technical Innovation of Bridge Engineering[J]. Technology Innovation Application, 2018, 241(21): 151-152. (in Chinese)
    [2] 赵敏. 桥梁施工技术现状及发展趋势[J]. 黑龙江科技信息, 2017(5): 176.ZHAO M. Present Situation and Development Trend of Bridge Construction Technology[J]. Heilongjiang Science and Technology Information, 2017(5): 176. (in Chinese)
    [3] ZHOU X, ZHANG X. Thoughts on the Development of Bridge Technology in China[J]. Engineering, 2019, 5(6).
    [4] 黄伟乙. 桥梁工程的发展现状及技术创新[J]. 建材与装饰, 2018, 518(9): 265-266.HUANG W Y. Development Status and Technical Innovation of Bridge Engineering[J]. Construction Materials Decoration, 2018, 518(9): 265-266. (in Chinese)
    [5] 山明义. 桥梁工程施工技术[J]. 江西建材, 2016(14): 164, 171.SHAN M Y. Bridge Construction Technology[J]. Jiangxi Building Materials, 2016(14): 164, 171. (in Chinese)
    [6] 刘自明 王邦楣 陈开利. 桥梁深水基础(精)[M]: 人民交通出版社, 2006.LIU Z M, WANG B M, CHEN K L. Bridge Deepwater Foundation[M]: China Communication Press, 2006. (in Chinese)
    [7] 余进. 深水施工单壁钢围堰的力学特性分析及关键技术研究[D]. 长沙理工大学, 2018.YU J. Mechanical Characteristics Analysis and Key Technology Research of Single Wall Steel Cofferdam in Deep Water Construction[D]. Changsha University of Science Technology, 2018. (in Chinese)
    [8] MA H, WANG J. Analysis of Key Points of Road and Bridge Foundation Construction Technology[J]. Iop Conference Series: Earth and Environmental Science, 2021, 638(1).
    [9] 新华网. 2021年主城市民可乘火车上下班[EB/OL].https://k.sina.cn/article_2810373291_a782e4ab034009nci.html.Xinhua. 2021 Urban commuters can commute by train[EB/OL].https://k.sina.cn/article_2810373291_a782e4ab034009nci.html. (in Chinese)
    [10] 新浪网. 定了!沪苏通长江公铁大桥![EB/OL].http://k.sina.com.cn/article_1830136671_v6d15ab5f01900ov26.html?from=society.Sina. It ''s done ! Husutong Yangtze River Railway Bridge![EB/OL].http://k.sina.com.cn/article_1830136671_v6d15ab5f01900ov26.html?from=society. (in Chinese)
    [11] 江苏城市论坛. 常泰长江大桥跨江段桥梁工程施工图设计通过审查[EB/OL].https://www.163.com/dy/article/FBC8GLPU05199GUB.html.Jiangsu Forum-Urban. Construction Drawing Design of Changtai Yangtze River Bridge[EB/OL]. https://www.163.com/dy/article/FBC8GLPU05199GUB.html. (in Chinese)
    [12] 新华社. 黑科技!世界最长跨海公路铁路两用大桥装上“安全气囊”[EB/OL]. https://xhpfmapi.zhongguowangshi.com/vh512/share/9273517.Sinhua. Black technology ! Installed with '' airbags '' on the world '' s longest sea-crossing highway-railway bridge[EB/OL].https://xhpfmapi.zhongguowangshi.com/vh512/share/9273517. (in Chinese)
    [13] 魏凯,杨雄欣,刘强,等. 大型桥梁沉井下沉过程中的水流力数值模拟[J]. 铁道标准设计, 2020, 64(11): 62-67.WEI K, YANG X X, LIU Q, et al. Numerical Analyses of Current Load of Large Bridge Caisson during its Sinking Process[J]. Railway Standard Design, 2020, 64(11): 62-67. (in Chinese)
    [14] 宋朋远. 复杂地质条件下沉井下沉各阶段风险分析及对策[J]. 工程技术研究, 2020, 5(20): 235-236.SONG P Y. Risk Analysis and Countermeasures of Subsidence Stages in Complex Geological Conditions[J]. Engineering and Technological Research, 2020, 5(20): 235-236. (in Chinese)
    [15] YANG H, YANG W, YANG T, et al. Experimental Investigation of Flow Around a Square Cylinder with Very Small Aspect Ratios[J]. Ocean Engineering, 2020, 214.
    [16] YANG H, YANG W, LI Q, et al. Experimental Investigation of Current Forces on Floating Cylinder During the Sinking Process[J]. Ocean Engineering, 2019, 178.
    [17] 汪跃飞. 明月峡长江大桥超大型双壁钢围堰施工安全风险控制研究[J]. 科技与创新, 2021, 169(1): 73-75, 78.WANG Y F. Study on construction safety risk control of super large double-wall steel cofferdam of Mingyuexia Yangtze River Bridge[J]. Science and Technology Innovation, 2021, 169(1): 73-75, 78. (in Chinese)
    [18] 李军堂. 沪通长江大桥主航道桥沉井施工关键技术[J]. 桥梁建设, 2015, 45(6): 12-17.LI J T. Key Techniques for Construction of Open Caissons of Main Ship Channel Bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45(6): 12-17. (in Chinese)
    [19] 李军堂. 沪通长江大桥主航道桥沉井锚碇系统设计[J]. 桥梁建设, 2017, 47(3): 1-6.LI J T. Design of Anchor Systems for open Caissons of Main Ship Channel Bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2017, 47(3): 1-6. (in Chinese)
    [20] 李军堂,潘东发. 沪通长江大桥主航道桥施工关键技术[J]. 桥梁建设, 2019, 49(5): 9-14.LI J T, PAN D F. Key Construction Technique for Main Ship Channel Bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2019, 49(5): 9-14. (in Chinese)
    [21] 陈开桥. 沪通长江大桥主航道桥边墩、辅助墩钢沉井定位施工技术[J]. 世界桥梁, 2016, 44(5): 5-10.CHEN K Q. Construction Technique for Steel Caissons Positioning for Side Piers and Auxiliary Piers of Main Navigational Channel Bridge of Hutong Changjiang River Bridge[J]. World Bridges, 2016, 44(5): 5-10. (in Chinese)
    [22] 陈开桥. 沪通长江大桥主航道桥桥塔墩钢沉井定位施工技术[J]. 世界桥梁, 2017, 45(1): 15-19.CHEN K Q. Positioning Construction Techniques for Pylon Pier Steel Caissons of Hutong Changjiang River Bridge[J]. World Bridges, 2017, 45(1): 15-19. (in Chinese)
    [23] 林长青. 沪通长江大桥主航道桥超大钢沉井定位方案比选[J]. 铁道建筑, 2020, 60(11): 29-32.LIN C Q. Comparison and Selection of Positioning Schemes of Oversize Steel Open Caisson of Main Channel Bridge of Shanghai-Nantong Yangtze River Bridge[J]. Railway Engineering, 2020, 60(11): 29-32. (in Chinese)
    [24] WANG C, YU X, LIANG F. Erosion Mechanism of Local Scour Around Cushioned Caisson on Reinforced Ground[J]. Marine Georesources Geotechnology, 2017, 35(7).
    [25] XIANG Q, WEI K, LI Y, et al. Experimental and Numerical Investigation of Local Scour for Suspended Square Caisson Under Steady Flow[J]. Ksce Journal of Civil Engineering, 2020, 24(prepublish).
    [26] 秦顺全,徐伟,陆勤丰,等. 常泰长江大桥主航道桥总体设计与方案构思[J]. 桥梁建设, 2020, 50(3): 1-10.QIN S Q, XU W, LU Q F, et al. Overall Design and Concept Developmengt for Main Navigational Channel Bridge of Chantai Changjiang River Bridge[J]. Bridge Construction, 2020, 50(3): 1-10. (in Chinese)
    [27] 秦顺全,谭国宏,陆勤丰,等. 超大沉井基础设计及下沉方法研究[J]. 桥梁建设, 2020, 50(5): 1-9.QIN S Q, TAN G H, LU Q F, et al. Research Design and Sinking Methods for Super-Large Caisson Foundation[J]. Bridge Construction, 2020, 50(5): 1-9. (in Chinese)
    [28] WANG S, WEI K, SHEN Z, et al. Experimental Investigation of Local Scour Protection for Cylindrical Bridge Piers Using Anti-scour Collars[J]. Water, 2019, 11(7).
    [29] 王东辉. 平潭海峡公铁两用大桥航道桥基础设计与施工创新技术[J]. 铁道标准设计, 2017, 61(9): 68-75.WANG D H. Innovative Technology in Channel Bridge Foundation Design and Construction of Pingtan Strait Hi-Rail Bridge[J]. Railway Standard Design, 2017, 61(9): 68-75. (in Chinese)
    [30] 沈明. 桥梁项目中的大直径灌注桩施工技术[J]. 中国高新科技, 2019, 60(24): 55-57.SHEN M. Construction Technology of Large Diameter Drilled Pile in Bridge Project[J]. China High-Tech, 2019, 60(24): 55-57. (in Chinese)
    [31] 纪尊众,刘昌永. 平潭海峡公铁两用跨海大桥钻孔灌注桩成孔关键问题分析及处理措施[J]. 铁道建筑技术, 2018, 305(12): 1-5, 23.JI Z Z, LIU C Y. Key Problems Analysis on Pingtan Staits Rail-cum-road Bridge During Bored Pile’s Construction and Its Treatment Measures[J]. Railway Construction Technology, 2018, 305(12): 1-5, 23. (in Chinese)
    [32] CHANGJIANG W. Application and Development of the Super-large Diameter Column Foundation of Bridge[J]. Iop Conference Series: Materials Science and Engineering, 2020(1): 12021.
    [33] 李军堂,秦顺全,张瑞霞. 桥梁深水基础的发展和展望[J]. 桥梁建设, 2020, 50(3): 17-24.LI J T, QIN S Q, ZHANG R X. Developments and Prospects of Deep Water Foundations for Bridge[J]. Bridge Construction, 2020, 50(3): 17-24. (in Chinese)
    [34] 高宗余,阮怀圣,秦顺全,等. 我国海洋桥梁工程技术发展现状、挑战及对策研究[J]. 中国工程科学, 2019, 21(3): 1-4.GAO Z Y, RUAN H S, QIN S Q, et al. Technical Status, Challenges, and Solutions of Marine Bridge Engineering[J]. Strategic Study of CAE, 2019, 21(3): 1-4. (in Chinese)
    [35] 牛祥恒,翟晓亮. 大跨度斜拉桥索塔锚固形式对比分析[J]. 公路, 2021(3): 97-100.NIU X H, ZHAI X L. Comparative Analysis of Cable - tower Anchoring Forms of Long - span Cable - stayed Bridge[J]. Highway, 2021(3): 97-100. (in Chinese)
    [36] 牟兆祥,马广,张雷. 四线铁路斜拉桥索塔锚固区环向预应力设计研究[J]. 世界桥梁, 2020, 48(3): 17-21.MU Z X, MA G, ZHANG L. Design of Hoop Prestress in Cable-Pylon Anchorage Zone of Cable-Stayed Bridge Accommodating Four Rail Tracks[J]. World Bridges, 2020, 48(3): 17-21. (in Chinese)
    [37] LI Q, LV J, YU Z. Innovation and Practice of Cable-pylon Anchorage Zone Using Group Aggregated Anchor System[J]. Materials Research Proceedings, 18.
    [38] QIFEN W. Parametric Design and Application of Steel Anchor Box for Main Girder of Long Span Cable-stayed Bridge[J]. Iop Conference Series: Materials Science and Engineering, 2018, 392(6).
    [39] 逯文茹,赵敏. 多节段内置钢锚箱式索塔锚固结构传力机理[J]. 公路, 2020, 65(11): 159-166.LU W R, ZHAO M. Transfer Mechanism of Multiple Segmental Pylon Anchorage Structure with Built-in Steel Anchor Box[J]. Highway, 2020, 65(11): 159-166. (in Chinese)
    [40] 吴峰,封伟. 空间索面自锚式悬索桥钢锚箱构造和受力分析[J]. 四川建材, 2020, 46(6): 159-160, 162.WU F, FENG W. Structure and Stress Analysis of Steel Anchor Box of Self - Anchored Suspension Bridge with Spatial Cable Plane[J]. Sichuan Building Materials, 2020, 46(6): 159-160, 162. (in Chinese)
    [41] 华晓勇. 钢桥塔索辅梁桥锚固区新型钢锚箱受力分析[J]. 公路, 2020, 65(1): 75-81.HUA X Y. Stress Analysis of a New Type Steel Anchor Box in Steel Pylon Anchorage Box Zone of Cable-supported Girder Bridge[J]. Highway, 2020, 65(1): 75-81. (in Chinese)
    [42] 戴世宏. 混凝土桥塔拉索锚固系统设计[J]. 北方交通, 2020, 324(4): 6-9.DAI S H. Design of Anchorage System for TowerBridge of Concrete Bridge[J]. Northern Communications, 2020, 324(4): 6-9. (in Chinese)
    [43] 文望青,严翯,曾甲华. 福厦高铁泉州湾跨海大桥桥塔设计[J]. 世界桥梁, 2020, 48(S1): 7-11.WEN W Q, YAN H, ZENG J H. Pylon Design for Quanzhou Bay Sea-Crossing Bridge on Fuzhou-Xiamen High-Speed Railway[J]. World Bridges, 2020, 48(S1): 7-11. (in Chinese)
    [44] 赵金霞,常英,张家元. 武汉青山长江公路大桥索塔锚固区钢锚梁设计研究[J]. 桥梁建设, 2020, 50(S1): 82-88.ZHAO J X, CHANG Y, ZHANG J Y. Study of design of Steel Anchor Beams in Cable-Pylon Anchorage Zone of Qingshan Changjiang River Highway Bridge in Wuhan[J]. Bridge Construction, 2020, 50(S1): 82-88. (in Chinese)
    [45] 周捷,陈海兴,李磊. 一种新型三腹板空间索面钢锚梁锚固结构计算分析[J]. 浙江交通职业技术学院学报, 2020, 21(4): 5-11.ZHOU J, CHEN H X, LI L. Analysis of A New Type Space Cable Surface Steel Anchor Beam Anchorage Structure with Three Webs[J]. Journal of Zhejiang Institute of Communications, 2020, 21(4): 5-11. (in Chinese)
    [46] 曹超,邓智文. 沙埕湾跨海大桥索塔钢锚梁施工技术探讨[J]. 公路交通科技(应用技术版), 2020, 16(4): 36-38.CAO C, DENG Z W. Discussion on construction technology of steel anchor beam of cable tower of Shachengwan Sea-Crossing Bridge[J]. Journal of Guizhou University of Finance and Economics, 2020, 16(4): 36-38. (in Chinese)
    [47] 钱涛. 大体积混凝土防裂控制[J]. 建筑技术开发, 2020, 47(4): 37-39.QIAN T. Crack Control of Mass Concrete[J]. Building Technology Developmen, 2020, 47(4): 37-39. (in Chinese)
    [48] WEIZHUN J, LINHUA J, LIN H, et al. Influence of Curing Temperature on the Mechanical Properties and Microstructure of Limestone Powder Mass Concrete[J]. Structural Concrete, 2020, 22.
    [49] XIANYU C. Temperature and Stress Fields of Anchorage Mass Concrete of a Suspension Bridge[J]. Iop Conference Series: Earth and Environmental Science, 2021, 636(1).
    [50] CHA S, JIN S. Prediction of Thermal Stresses in Mass Concrete Structures with Experimental and Analytical Results[J]. Construction and Building Materials, 2020, 258.
    [51] Ho N, Nguyen T, Bui A, et al. Temperature Field in Mass Concrete at Early-age: Experimental Research and Numerical Simulation[J]. International Journal on Emerging Technologies, 2020, 11(3): 936-941.
    [52] 贾海艳. 桥梁主塔大体积混凝土的温控指标仿真分析[J]. 黄冈职业技术学院学报, 2020, 22(2): 107-110.JIA H Y. Simulation Analysis on Temperature Control Index of Bridge Main Tower Mass Concrete[J]. Journal of Huanggang Polytechnic, 2020, 22(2): 107-110. (in Chinese)
    [53] 谭文鹏,王荣兴,赵伟,等. 基于温差控制的大体积混凝土智能温控系统及方法[J]. 公路, 2020, 65(10): 211-215.TAN W P, WANG R X, ZHAO W, et al. Intelligent Temperature Control System and Method of Mass Concrete Based on Temperature Difference Control[J]. Highway, 2020, 65(10): 211-215. (in Chinese)
    [54] 徐文,闫志刚,张士山,等. 沪通长江大桥主航道桥桥塔温度场与膨胀调控抗裂技术[J]. 桥梁建设, 2020, 50(1): 44-49.XU W, YAN Z G, ZHANG S S, et al. Technique of Controlling Temperature Field and Concrete Expansion to Linit Cracking in Pylons of Main Navigational Channel Bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2020, 50(1): 44-49. (in Chinese)
    [55] 闫志刚,安明喆,尹必晶,等. 超高桥塔高强混凝土性能研究及收缩调控[J]. 铁道工程学报, 2020, 37(3): 40-46.YAN Z G, AN M Z, YI B J, et al. Performance and Shrinkage Control of High Strength Concrete for Super High Bridge Tower[J]. Journal of Railway Engineering Society, 2020, 37(3): 40-46. (in Chinese)
    [56] 张士山,徐文,姚婷,等. 基于多场耦合作用的索塔混凝土开裂风险研究[J]. 混凝土, 2020, 368(6): 37-40.ZHANG S S, XU W, YAO T, et al. Research on cracking risk ofcable tow erconcrete based on m ulti-field coupling[J]. Concrete, 2020, 368(6): 37-40. (in Chinese)
    [57] 韩学龙. 空心变截面索塔爬模施工工艺[J]. 交通世界, 2021, 562563564(Z2): 143-144.HAN X L. Construction Technology of Climbing Die for Hollow Variable Section Cable Tower[J]. Transpo World, 2021, 562563564(Z2): 143-144. (in Chinese)
    [58] 王红力,段妙珊. 液压爬模在桥梁主塔施工中的应用[J]. 四川水力发电, 2019, 38(5): 71-73.WANG H L, DUAN M S. Application of Hydraulic Climbing Formwork in Construction of Bridge Main Tower[J]. Sichuan Water Power, 2019, 38(5): 71-73. (in Chinese)
    [59] 张科. 悬索桥索塔施工技术[J]. 交通世界, 2020, 548(26): 164-166.ZHANG K. Construction Technology of Suspension Bridge Tower[J]. Transpo World, 2020, 548(26): 164-166. (in Chinese)
    [60] 王东辉,韩冰. 平潭海峡公铁两用大桥通航孔桥桥塔施工关键技术[J]. 桥梁建设, 2019, 49(3): 1-5.WANG D H, HAN B. Key Techniques for Construction of Pylon of Channel Bridge of Pingtan Straits Rail-cum-Road Brisge[J]. Bridge Construction, 2019, 49(3): 1-5. (in Chinese)
    [61] 倪喜雨,郭亮亮,魏鹏,等. 三维变曲面倾斜混凝土索塔模板体系施工技术[J]. 施工技术, 2020, 49(22): 87-89.NI X Y, GUO L L, WEI P, et al. Construction Technology of Three-dimensional Curved Surface Inclined Concrete Cable Tower Formwork System[J]. Construction Technology, 2020, 49(22): 87-89. (in Chinese)
    [62] 倪喜雨,潘建国,郭亮亮,等. 超高异形索塔结构截面递减爬升造塔平台施工技术[J]. 施工技术, 2020, 49(22): 90-92, 103.NI X Y, PAN J G, GUO L L, et al. Construction Technology of Decreasingly Climbing Platform for Ultra-high Special shaped Cable Tower Structure[J]. Construction Technology, 2020, 49(22): 90-92, 103. (in Chinese)
    [63] 邹威,宋神友,陈焕勇. 深中通道伶仃洋大桥超高混凝土桥塔施工关键技术[J]. 桥梁建设, 2020, 50(6): 97-103.ZOU W, SONG S Y, CHEN H Y. Key Contruction Techniques for Ultra-High Performance Concrete Pylon of Lingdingyang Bridge on Shenzhen-Zhongshan Link[J]. Bridge Construction, 2020, 50(6): 97-103. (in Chinese)
    [64] 张阳. 桥梁工程机械设备技术改造要点[J]. 设备管理与维修, 2020, 484(22): 79-80.ZHANG Y. Technical Transformation Points of Mechanical Equipment in Bridge Engineering[J]. Plant Maintenance Engineering, 2020, 484(22): 79-80. (in Chinese)
    [65] 周衍领. 桥面吊机在我国斜拉桥建设中的应用及发展[J]. 国防交通工程与技术, 2020, 18(6): 9-13.ZHOU Y L. The Application of the Deck Crane to the Construction of Cable-Stayed Bridges at Home and Its Development[J]. Traffic Engineering Technology for National Defence, 2020, 18(6): 9-13. (in Chinese)
    [66] 范强生,张梦慈,孙余. XR800E超大入岩型旋挖钻机[J]. 工程机械, 2020, 51(4): 6, 12-15.FAN Q S, ZHANG M C, SUN Y. Model XR800E Ultra Large Rock Type Rotary Drilling Rig[J]. Construction Machinery and Equipment, 2020, 51(4): 6, 12-15. (in Chinese)
    [67] 马晓东. 平潭海峡公铁两用大桥总体施工方案[J]. 桥梁建设, 2017, 47(2): 1-6.MA X D. General Construction Scheme of Pingtan Straits Rail-cum-Road Bridge[J]. Bridge Construction, 2017, 47(2): 1-6. (in Chinese)
    [68] 李文. C800型多功能打桩机[J]. 工程机械, 2020, 51(9): 6, 8-12.LI W. Model C800 Multifunctional Pile Driver[J]. Construction Machinery and Equipment, 2020, 51(9): 6, 8-12. (in Chinese)
    [69] 国产最大规格海上双作用全液压打桩锤研制成功[J]. 锻压装备与制造技术, 2020, 55(1): 4.Successful Development of Domestic Maximum Specification Marine Double-acting Hydraulic Pile Hammer[J]. China Metal Forming Equipment Manufacturing Technology, 2020, 55(1): 4. (in Chinese)
    [70] 振华重工研发新型全回转式起重打桩机[J]. 起重运输机械, 2020, 554(6): 13.Research and Development of New Full-Rotary Crane Pile Driving Machine for Zhenhua Heavy Industry[J]. Lifting the transport machinery, 2020, 554(6): 13. (in Chinese)
    [71] 重150t、直径7600mm异型环锻件研制成功[J]. 锻压装备与制造技术, 2020, 55(6): 4-5.Successful Development of Special Ring Forgings with Weight 150t and Diameter 7600mm[J]. China Metal Forming Equipment Manufacturing Technology, 2020, 55(6): 4-5. (in Chinese)
    [72] 陈叔,王强,林国辉,等. 高铁箱梁技术发展与40m/1000t级创新技术装备研究[J]. 建设机械技术与管理, 2020, 33(2): 44-52.CHEN S, WANG Q, LIN G H, et al. Development of High Speed Railway Box Girder Technology and Research on 40m / 1000t Innovative Technology and Equipment[J]. Construction Machinery Technology Management, 2020, 33(2): 44-52. (in Chinese)
    [73] 陈叔,王强,林国辉,等. 高铁箱梁技术发展及40m/1000t创新技术装备研究(续)[J]. 建设机械技术与管理, 2020, 33(3): 25-31.CHEN S, WANG Q, LIN G H, et al. Development of High Speed Railway Box Girder Technology and Research on 40m / 1000t Innovative Technology and Equipment ( Continued )[J]. Construction Machinery Technology Management, 2020, 33(3): 25-31. (in Chinese)
    [74] 韩利军,侯杰,孙振军. JQS30m-250t U型梁短尾式架桥机的设计与分析[J]. 建筑机械, 2020, 538(12): 45-49.HAN L J, HOU J, SUN Z J. Design and Analysis of JQS30m-250t U-beam ShortSTail Bridge Erecting Machine[J]. Construction Machinery, 2020, 538(12): 45-49. (in Chinese)
    [75] 秦洪义. HZQ550高铁架桥机架设小曲线桥梁的技术改进[J]. 建筑机械化, 2020, 41(3): 21-22, 35.QIN H Y. HZQ550 Technical Improvement of Small Curve Bridge for High Speed Rail Bridge Frame[J]. Construction Mechanization, 2020, 41(3): 21-22, 35. (in Chinese)
    [76] 刘勋,金仓,刘民胜,等. 南京长江五桥QMDJ500型桥面吊机研制及应用[J]. 筑路机械与施工机械化, 2020, 37(10): 51-56.LIU X, JIN C, LIU M S, et al. Develipment and App;ication of QMDJ500 Deck Crane for Fifth Yangtze River Bridge in Nanjing[J]. Road Machinery Construction Mechanization, 2020, 37(10): 51-56. (in Chinese)
    [77] 王体宏,时敬涛,李纯,等. 钢桥面铺装技术现状与发展[J]. 石油沥青, 2020, 34(1): 46-49.WANG T H, SHI J T, LI C, et al. The Status and Development of Steel Bridge Deck Paving Technology[J]. Petroleum Asphalt, 2020, 34(1): 46-49. (in Chinese)
    [78] 福格勒摊铺机+悍马压路机助力沪通长江大桥钢桥面高效摊铺[J]. 交通世界, 2020, 535(13): 4-5.V?gele Paver + HAMM Roller Helps Shanghai-Suzhou-Nantong Yangtze River Bridge High Efficient Paving of Steel Bridge Deck[J]. Transpo World, 2020, 535(13): 4-5. (in Chinese)
    [79] 李娇,夏永. 解决钢桥面铺装世界级难题 福格勒摊铺机+悍马压路机高效铺装沪通长江大桥[J]. 市政技术, 2020, 38(3): 6-7.LI J, XIA Y. To Solve the World-class Problem of Steel Bridge Deck Pavement, V?gele paver + HAMM Roller is Used to Efficiently Pave Shanghai-Suzhou-Nantong Yangtze River Bridge[J]. Municipal Engineering Technology, 2020, 38(3): 6-7. (in Chinese)
    [80] 邱玉兴. 激光超声波双系统摊铺机在混凝土桥面铺装施工中的应用[J]. 工程建设与设计, 2021, 449(3): 193-195.QIU Y X. Application of Laser Ultrasonic Double-System Paver in Concrete Bridge Deck Pavement Construction[J]. Construction Technology, 2021, 449(3): 193-195. (in Chinese)
    [81] 王敬涛,夏秀超. 激光超声波桁架摊铺机桥面铺装施工技术[J]. 云南水力发电, 2020, 36(7): 50-53.WANG J T, XIA X C. Construction Technology of Laser Ultrasonic Truss Paver Bridge Deck Pavement[J]. Yunnan Water Power, 2020, 36(7): 50-53. (in Chinese)
    [82] 毛伟琦,胡雄伟. 中国大跨度桥梁最新进展与展望[J]. 桥梁建设, 2020, 50(1): 13-19.MAO W Q, HU X W. Latest Developments and Prospects for Long-Span Bridges in China [J]. Bridge Construction, 2020, 50(1): 13-19. (in Chinese)
    [83] ZHANG J. Research Progress of the Application of Bim Technology in Bridge Construction[J]. Journal of Progress in Civil Engineering, 2020, 2(9).
    [84] GE Y, YUAN Y. State-of-the-art Technology in the Construction of Sea-crossing Fixed Links with a Bridge, Island, and Tunnel Combination[J]. Engineering, 2019, 5(1).
    [85] SONG S Y, GUO J, SU Q K, et al. Technical challenges in the construction of bridge-tunnel sea-crossing projects in China [J]. Journal of Zhejiang University-SCIENCE A: Applied Physics Engineering, 2020, 21(7).
    [86] LI Q, LEI J, ZHANG H. Risk Estimation of Large Complex Bridge Construction Based on Factor Analysis[J]. E3s Web of Conferences, 2020, 218.
    [87] HUANG W, PEI M, LIU X, et al. Design and Construction of Super-long Span Bridges in China: Review and Future Perspectives[J]. Frontiers of Structural and Civil Engineering, 2020, 14(4).
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:678
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-08
  • 最后修改日期:2021-07-08
  • 录用日期:2021-07-09
文章二维码