桥梁大数据2020年度研究进展
DOI:
CSTR:
作者:
作者单位:

西南交通大学 土木工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金(52008356)、中国博士后科学基金(2020M683355)、四川省科技计划项目(2021YJ0543)和中央高校基本科研业务费专项资金资助(2682021CX015)


State-of-the-art Review of Big Data on Bridge Engineering in 2020
Author:
Affiliation:

School of Civil Engineering,Southwest Jiaotong University

Fund Project:

National Natural Science Foundation of China (52008356), China Postdoctoral Science Foundation funded project (2020M683355), Science and Technology Plan Project of Sichuan Province of China (2021YJ0543) and Fundamental Research Funds for the Central Universities (2682021CX015)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信息化时代背景下,大数据在桥梁工程的应用研究成为广泛关注的热点话题。以桥梁健康监测为典型数据收集方式得到的海量数据,在数据处理及应用等层面给桥梁工程从业者带来不小挑战。围绕桥梁大数据2020年度的研究进展,本文回顾了高效存储、异常处理与去冗降噪等数据前处理手段,并重点关注了损伤识别、状态评估及智能管养等大数据的具体应用,以此梳理桥梁大数据2020年度的相关研究进展,并总结分析已有的研究成果及未来研究应用的重难点。

    Abstract:

    Under the background of the information era, the application of big data on bridge engineering has become a hot topic. The massive data obtained from data collection methods like bridge health monitoring have brought great challenges to bridge engineering practitioners in terms of data processing and application. Focusing on the research progress of big data on bridge engineering in 2020, this article reviews data preprocessing methods such as efficient storage, exception handling, redundancy and noise reduction, and focuses on specific applications of big data such as damage identification, condition assessment, and intelligent management. The relevant research progress of big data on bridge engineering in 2020 is sorted out and the existing achievements along with the focuses and difficulties of future research applications are summarized.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-10
  • 最后修改日期:2021-07-10
  • 录用日期:2021-07-11
  • 在线发布日期:
  • 出版日期:
文章二维码