钢桥部分新进展
CSTR:
作者单位:

西南交通大学


The State-of-the-art in Steel Bridges
Author:
Affiliation:

Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [106]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了促进钢桥技术的发展,系统梳理了近年来国内外钢桥领域的研究热点与前沿。首先回顾了我国大型钢桥一年来的重要建设成就与技术进步,然后分别对钢桥领域主要研究方向取得的最新进展进行了系统总结,同时对钢桥领域各方面所做出的诸多具有开创意义的工作进行了详细介绍,以期对钢桥领域的工程应用与学术研究提供主要信息与借鉴。

    Abstract:

    In order to promote the development of steel bridge technology, research hot issues and frontiers in recent years in the field of steel bridges at home and abroad were systematically sorted out. Firstly, it reviews the recent construction achievements and technological progress of large-scale steel bridges in China. Then the latest progress made in the main research directions in the field of steel bridges were systematically summarized. At the same time, many pioneering work done in various aspects of the steel bridge are introduced in detail. It is expected to provide basic information and reference for engineering applications and academic research in the field of steel bridges.

    参考文献
    [1] 杜海龙,秦大燕,罗小斌,郑健,隗磊军.超大跨径拱桥施工控制[J].公路, 2019, 64(06): 120-125.U H L, QIN D Y, LUO X B, et al. Construction Control of Super Long Span Arch Bridge[J]. Highway, 2019, 64(06): 120-125.
    [2] 唐贺强,徐恭义,刘汉顺. 五峰山长江大桥桥主桥总体设计[J]. 桥梁建设, 2020, 050(006):1-6.ANG H Q, XU G Y, LIU H S. Overall design of main bridge of Wufengshan changjiang river bridge[J]. Bridge Construction, 2020, 050(006):1-6.
    [3] 梅新咏,徐伟,段雪炜,陈翔.平潭海峡公铁两用大桥总体设计[J].铁道标准设计,2020,64(S1):18-23.EI X Y, XU W, DUAN X W, et al. Overall design of Pingtan strait combined bridges[J]. Railway Standard Design,2020,64(S1):18-23.
    [4] 华晓烨.南京长江第五大桥科技成果转化实践研究[J].科技经济市场,2018(12):1-3.UA X Y. Research on the Transformation of Scientific and Technological Achievements of the Fifth Nanjing Yangtze River Bridge[J]. Science Technology Ecnony Market,2018(12):1-3.
    [5] 孙洪斌,陈涛.宁波三官堂大桥施工控制关键技术[J].桥梁建设,2020,50(05):119-124.UN H B, CHEN T. Key construction control techniques for Sanguantang bridge in Ningbo[J]. Bridge Construction,2020,50(05):119-124.
    [6] Mohammadreza Izadi, Masoud Motavalli,Elyas Ghafoori. Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections[J]. Construction and Building Materials, 2019,227.
    [7] 刘新华, 张建仁. 锈蚀对Q550E高性能钢梁抗弯承载力影响的试验研究[J]. 中国公路学报, 2019,32(11):184-191+201.IU X H, ZHANG X R. Experimental study on effect of corrosion on flexural load-carrying capacity of Q550E high-performance steel girder[J]. China Journal of Highway and Transport, 2019,32(11):184-191+201.
    [8] Kiswendsida J. Kere,Qindan Huang. Life-Cycle Cost Comparison of Corrosion Management Strategies for Steel Bridges[J]. Journal of Bridge Engineering,2019,24(4)
    [9] 堀澤英太郎,宮嵜靖大. 部材両端をステンレス鋼とした鋼製部材の圧縮および曲げ強度評価法[J]. 構造工学論文集 A,2020,65A.
    [10] Carlos Graciano,Nelson Loaiza,Euro Casanova. Resistance of slender austenitic stainless steel I- girders subjected to patch loading[J]. Structures,2019,20.
    [11] Zhang Jieying,Ebrahimi Nafiseh. Corrosion Risk of Using Stainless Steel Bolts for A1010 Steel Bridge Girders[J]. Journal of Bridge Engineering,2021,26(2).
    [12] Dissanayake D.M.M.P.,Zhou C.,Poologanathan K.,Gunalan S.,Tsavdaridis K.D.,Guss J.. Numerical simulation and design of stainless steel hollow flange beams under shear[J]. Journal of Constructional Steel Research,2021,176.
    [13] Tuan Le,Mark A. Bradford,Xinpei Liu,Hamid R. Valipour. Buckling of welded high-strength steel I-beams[J]. Journal of Constructional Steel Research,2020,168.
    [14] Tuan Le,Anna Paradowska,Mark A. Bradford,Xinpei Liu,Hamid R. Valipour. Residual stresses in welded high-strength steel I-Beams[J]. Journal of Constructional Steel Research,2020,167.
    [15] In-plane bending behaviour and capacities of S690 high strength steel welded I-section beams[J]. Journal of Constructional Steel Research,2019,162.
    [16] Yang Bo,Dong Minhao,Han Qi,Elchalakani Mohamed,Xiong Gang. Flexural Behavior and Rotation Capacity of Welded I-Beams Made from 690-MPa High-Strength Steel[J]. Journal of Structural Engineering,2021,147(2).
    [17] Yi-Fan Lyu,Guo-Qiang Li,Yan-Bo Wang. Behavior-Based Resistance Model for Bearing-Type Connection in High-Strength Steels[J]. Journal of Structural Engineering,2020,146(7).
    [18] Guo H , Xiao F , Liu Y , et al. Experimental and numerical study on the mechanical behavior of Q460D high-strength steel bolted connections [J]. Journal of Constructional Steel Research, 2018, 151(DEC.):108-121.
    [19] European Committee for Standardization. BS EN 1993 Eurocode 3: Design of Steel Structures [S], CEN Brussels, 2005.
    [20] 郭宏超, 皇垚华, 刘云贺,等. Q460D高强钢及其螺栓连接疲劳性能试验研究[J]. 建筑结构学报,2018,39(08):165-172.UO H C, HUANG K H, LIU Y H, et al. Experimental study on fatigue property of Q460 high-strength steel and its bolted connections[J]. Journal of Building Structures, 2018,39(08):165-172.
    [21] Ryan J. Sherman,William N. Collins,Robert J. Connor. Large-Scale Flexure Fracture Experiments on High-Toughness Steel[J]. Journal of Bridge Engineering,2019,24(7).
    [22] 郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3):1-10.HENG K F, ZHANG Y, HENG J L, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Technology, 2020, 52(3):1-10.
    [23] Su H , Wang J , Du J . Fatigue behavior of uncorroded non-load-carrying bridge weathering steel Q345qDNH fillet welded joints[J]. Journal of Constructional Steel Research, 2020, 164:105789.
    [24] Su H , Wang J , Du J . Fatigue behavior of corroded non-load-carrying bridge weathering steel Q345qDNH fillet welded joints[J]. Structures, 2020, 26:859-869.
    [25] Su H , Wang J , Du J . Fatigue behavior of uncorroded butt welded joints made of bridge weathering steel - ScienceDirect[J]. Structures, 2020, 24:377-385.
    [26] Zhang Y , Zheng K , Heng J , et al. Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges[J]. Applied Sciences, 2019, 9(17):3461.
    [27] 刘新华, 张建仁. 锈蚀对Q550E高性能钢梁抗弯承载力影响的试验研究[J]. 中国公路学报, 2019,32(11):184-191+201.IU X H, ZHANG J R. Experimental study on effect of corrosion on flexural load-carrying capacity of Q550E high-performance steel girder[J]. China Journal of Highway and Transport, 2019,32(11):184-191+201.
    [28] Fan Yueming, Liu Wei, Sun Zongteng, Zhao Yonggang, Dong Baojun, Zhang Tianyi, Banthukul Wongpat. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere[J]. Construction and Building Materials,2021,266(PB).
    [29] 陶晓燕, 史志强, 韩继跃,等. 耐候钢桥的高强度螺栓连接试验研究[J]. 钢结构, 2018, 33(001):105-108.AO X Y, SHI Z Q, HAN J Y, et al. Experiment research on high strength bolted connection of weathering steel bridge[J]. Steel Construction, 2018, 33(001):105-108.
    [30] 清水 弘樹,大倉 一郎,面内曲げを受ける縦補剛されたアルミニウム合金板の最適断面形状と耐荷力,構造工学論文集,Vol.65A,p.15-25,2019.
    [31] 日和 裕介, 下里 哲弘, 加藤 祐介, 小野 秀一, 木村 雅昭, 中野 麻衣子. 腐食した鋼桁端部への Cold Spray 防食技術に関する実証[J]. 構造工学論文集 A, 66:388-399.
    [32] 井比 亨, 北根 安雄, 三ツ木 幸子. 腐食した鋼桁端部に対する当て板補修の性能回復機構に関する研究[J]. 構造工学論文集 A, 65:466-478.
    [33] 森 博啓, 廣畑 幹人. 鋼桁端の腐食減厚部に対する当て板溶接補修の適用性に関する基礎的検討[J]. 土木学会論文集A1(構造?地震工学), 76(1):15-28.
    [34] 中田 祐利花, 野上 邦栄, 石川 貫人, 岸 祐介, 村越 潤, 小峰 翔一, 細見 直史, 入部 孝夫腐食の生じた鉄道リベット桁橋桁端部の圧縮耐荷力評価に関する実験的および解析的検討[J]. 構造工学論文集 A, 65:452-465.
    [35] 北根 安雄, 上山 裕太, 寺口 大輝, 松井 孝洋, 舘石 和雄, 後藤 基浩. 食した鋼桁端部に対する引抜成形FRPアングル部材による補修方法の検討[J]. 土木学会論文集A1(構造?地震工学), 75(5):27-35.
    [36] Chen J , Zhang H , Yu Q Q . Static and fatigue behavior of steel-concrete composite beams with corroded studs[J]. Journal of Constructional Steel Research, 2019, 156(MAY):18-27.
    [37] Naftary Gathimba,Yasuo Kitane. Numerical investigation on the effect of surface roughness on the ductility of steel plates corroded in marine environments subjected to tensile loading[J]. Journal of Structural Engineering, A,2020,65A.
    [38] Fiolek P , Jakubowski J . Local buckling of highly corroded hot-rolled box-section beams[J]. Journal of Constructional Steel Research, 2019, 157(JUN.):359-370.
    [39] 有村 健太郎, 廣澤 直人, 舟山 耕平, 山口 隆司. 支間部に腐食劣化の生じた鋼 I 桁橋の耐荷性能評価に関する解析的検討[J]. 構造工学論文集 A, 65:441-451.
    [40] 张振浩, 陈济功, 朱迅. 基于神经网络的斜拉桥钢箱梁局部连接细节腐蚀疲劳可靠度研究[J]. 中国公路学报,2019,32(12):186-196.HANG Z H, CHEN J G, ZHU X. Corrosion fatigue reliability of steel box girder connection details of a cable-stayed bridge based on a neural network[J]. China Journal of Highway and Transport, 2019,32(12):186-196.
    [41] José António Fonseca de Oliveira Correia a b, B B A S P , Patrícia Cordeiro Raposo a, et al. Fatigue Strength Evaluation of Resin-Injected Bolted Connections Using Statistical Analysis[J]. Engineering, 2017, 3( 6):795-805.
    [42] Hiroyuki SUZUKI, Yuichi KAWABE, et al. The 6th International Symposium on Steel Structures, November 3-5, 2011, Seoul, Korea.
    [43] 飛永浩伸, 村山稔, 佐伯英一郎, 等. 球状黒鉛鋳鉄の道路橋床版への適用に関する基礎的研究[J]. 鋼構造論文集, 2017, 24(95): 13-95.
    [44] 飛永浩伸, 山口栄輝, 村山稔. 球状黒鉛鋳鉄を用いた道路橋床版の塑性変形性能に関する考察[J]. 鋼構造論文集, 2018, 64(0): 109-119.
    [45] Development of Durable Bridge Deck for Highway Bridge:Application of Spheroidal Graphite Cast Iron
    [46] Development of Ductile Cast-Iron Deck for Highway Bridges.
    [47] Nilsson P, Al-Emrani M, Atashipour S R. Fatigue-strength assessment of laser welds in corrugated core steel sandwich panels[J]. Journal of Constructional Steel Research, 2020, 164: 105797.
    [48] Nilsson P, Hedeg?rd J, Al-Emrani M, et al. The impact of production-dependent geometric properties on fatigue-relevant stresses in laser-welded corrugated core steel sandwich panels[J]. Welding in the World, 2019, 63(6): 1801-1818.
    [49] Nilsson P, Al-Emrani M, Atashipour S R. Transverse shear stiffness of corrugated core steel sandwich panels with dual weld lines[J]. Thin-walled structures, 2017, 117: 98-112.
    [50] 日本橋梁建設協会.鋼床版構造の耐久性向上に関する共同研究: 鋼床版デッキプレート-垂直補剛材溶接部を対象とした耐久性向上に関する検討[R]. 日本: 土木研究所, 2019.
    [51] 齊藤史朗,山内昭弘,坂野昌弘. 大型Uリブ鋼床版縦リブ横リブ交差部の疲労耐久性の検討[C]. 土木学会第73回年次学術講演会. 2018.
    [52] 田畑晶子, 杉山裕樹. Uリブ鋼床版の疲労耐久性向上のための構造改良[J]. 阪神高速道路株式会社技報, 2013, 26: L0934B1-8.
    [53] 杉山裕樹, 田畑晶子, 春日井俊博, 等. 鋼床版の U リブ-横リブ交差部における下側スリット部の疲労耐久性向上構造の検討[J]. 土木学会論文集A1,2014,70(1):18-30.
    [54] 张清华, 李俊, 郭亚文, 等. 正交异性钢桥面板结构体系的疲劳破坏模式和抗力评估[J]. 土木工程学报, 2019, 52(1): 71-81.HANG Q H, LI J, GUO Y W, et al. Fatigue failure modes and resistance evaluation of orthotropic steel bridge deck structural system[J]. China Civil Engineering Journal, 2019, 52(1): 71-81.
    [55] Li J, Zhang Q, Bao Y, Zhu J, et al. An Equivalent Structural Stress-Based Fatigue Evaluation Framework for Rib-to-Deck Welded Joints in Orthotropic Steel Deck [J]. Engineering Structures, 2019, 196, 109304.
    [56] 张清华, 李俊, 郭亚文, 等. 深圳至中山跨江通道钢桥面板结构疲劳试验研究[J]. 土木工程学报, 2020, 53(11): 102-114.HANG Q H, LI J, GUO Y W, et al. Fatigue model tests of orthotropic steel bridge deck of Shenzhen-Zhongshan Link[J]. China Civil Engineering Journal, 2020, 53(11): 102-114.
    [57] 张清华, 袁道云, 王宝州, 等. 纵肋与顶板新型双面焊构造细节疲劳性能研究[J]. 中国公路学报, 2020, 33(5): 79-91.HANG Q H, YUAN D Y, WANG B Z, et al. Fatigue performance of innovation both-side welded rib-to-deck joints[J]. China Journal of Highway and Transport, 2020, 33(5): 79-91.
    [58] 朱爱珠, 李牧, 田杨,等. 设内隔板正交异性钢桥面板足尺模型疲劳试验[J].钢结构,2017,32(01):45-50.HU A Z, LI M, TIAN Y, et al. Fatigue test on full-scale orthotropic steel bridge deck with inner diaphragm[J]. Steel Construction, 2017,32(01):45-50.
    [59] Wang F, Zhao Z, Chen Q, et al. Experimental and numerical study on welding residual stress of U-rib stiffened plates[J]. Journal of Constructional Steel Research, 2020, 175: 106362.
    [60] Cui C, Zhang Q, Bao Y, et al. Residual stress relaxation at innovative both-side welded rib-to-deck joints under cyclic loading[J]. Journal of Constructional Steel Research, 2019, 156: 9-17.
    [61] Xiong Y, Li C, Chen Z, et al. The Evolution of Residual Stress in Rib-Diaphragm Joints of Orthotropic Steel Decks Subjected to Thermal Cutting and Welding[J]. Materials, 2020, 13(17): 3804.
    [62] 贺欣怡,吴冲,曾明辉, 等. 组合桥面板U肋螺栓接头疲劳受力性能[J].同济大学学报(自然科学版),2020,48(07):990-997.E X Y, WU C, ZENG M H, et al. Fatigue performance of bolted joint for U-ribs in composite bridge deck[J]. Journal of Tongji University (Natural Science), 2020, 48(07): 990 - 997.
    [63] Liu Y, Zhang Q, Bao Y, et al. Fatigue behavior of orthotropic composite deck integrating steel and engineered cementitious composite[J]. Engineering Structures, 2020, 220, 111017: 1-14.
    [64] Liu Y, Zhang Q, Bao Y, et al. Static and fatigue push-out tests of short headed shear studs embedded in Engineered Cementitious Composites (ECC)[J]. Engineering Structures, 2019, 182: 29-38.
    [65] Liu Y, Zhang Q, Meng W, et al. Transverse fatigue behaviour of steel-UHPC composite deck with large-size U-ribs[J]. Engineering Structures, 2019, 180: 388-399.
    [66] 刘益铭. 大纵肋正交异性钢—高性能混凝土组合桥面板疲劳失效机理研究[D]. 成都: 西南交通大学, 2019.IU Y M. Fatigue failure mechanism of steel-high performance concrete composite bridge deck with large-size U-ribs[D]. Chengdu: Southwest Jiaotong University, 2019.
    [67] 卜一之, 刘欣益, 张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究[J]. 工程力学, 2020, 37(10): 209-217.U Y Z, LIU X Y, ZHANG Q H. Cracking load calculation for steel-uhpc composite slabs based on the section-stress method[J]. Engineering Mechanics, 2020, 37(10): 209-217.
    [68] 楚得,郑凯锋,衡俊霖.美日欧中规范钢桥压杆稳定性计算对比研究[J].铁道标准设计,2019,63(04):84-90.HU D, ZHENG K F, HENG J L. Comparative study on calculation of stability capacity of compression members of steel bridges in AASHTO, JSSC, Eurocode and JTG[J]. Railway Standard Design, 2019,63(04):84-90.
    [69] 赵人达,吴德宝,王永宝,贾毅,廖平.钢管混凝土柱徐变稳定性分析[J].西南交通大学学报,2019,54(03):468-474.HAO R D, WU D B, WANG Y B, et al. Creep bckling aalysis of cncrete-flled seel tbular clumns[J]. Journal of Southwest Jiaotong University, 2019,54(03):468-474.
    [70] 林德慧,陈以一.部分填充钢-混凝土组合柱整体稳定分析[J].工程力学,2019,36(S1):71-77+85.IN D H, CHEN Y Y. Overall stability analysis of partially encased composite columns[J]. Engineering Mechanics, 2019,36(S1):71-77+85.
    [71] Lanc D , Turkalj G , Pesic I . Global buckling analysis model for thin-walled composite laminated beam type structures[J]. Composite Structures, 2014, 111(may):371-380.
    [72] 施刚, 林错错, 王元清, 石永久. 高强度钢材箱形截面轴心受压短柱局部稳定试验研究[J]. 工业建筑, 2012,42(1): 18―25, 36.HI G, LIN C C, WANG Y Q, et al. Experimental study on local buckling of high strength steel square box section stub columns under axial compression[J]. Industrial Construction, 2012,42(1): 18―25, 36.
    [73] 施刚, 林错错, 周文静, 等. 460MPa 高强钢箱形截面轴压柱局部稳定有限元分析和设计方法研究[J]. 工程力学, 2014 (5): 128-136.HI G, LIN C C, ZHOU W J, et al. Finite element analysis and design method study on the local buckling of 460mpa hss box section axial compressed columns[J]. Engineering Mechanics, 2014 (5): 128-136.
    [74] 顾理想. 高强钢工字形截面轴心受压构件局部屈曲承载力研究[D].安徽工业大学,2019.U L X. Research on local bucking bearing capacity of high-strength steel I-shaped axial compression members[D]. Anhui University of Technology, 2019.
    [75] Shi G, Zhang Z, Zhou L, et al. Experimental and numerical investigation on Local–Overall interactive buckling behavior of welded I-Section steel columns[J]. Thin-Walled Structures, 2020, 151: 106763.
    [76] 舒赣平, 石志响, 李宗京, 等.Q550高强钢焊接箱形截面轴压构件局部稳定和相关稳定试验研究[J].钢结构,2016,31(02):10-17.HU G P, SHI Z X, LI Z J, et al. Experimental study on local stability and correlation stability of Q550 high strength steel welded box section members under Axial compression[J]. Steel Construction, 2016,31(02):10-17.
    [77] Bai L, Wadee M A. Slenderness effects in thin-walled I-section struts susceptible to local–global mode interaction[J]. Engineering Structures, 2016, 124: 128-141
    [78] 班慧勇. 高强度钢材轴心受压构件整体稳定性能与设计方法研究[D].清华大学,2012.AN H Y. Research on the overall bucking behavior and design method of high strength steel columns under axial compression[J]. Tsinghua University, 2012.
    [79] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB50017—2017[S].北京:中国建筑工业出版社, 2018.
    [80] 王春江,戴建国,臧瑜,等.自锚式钢箱梁悬索桥静力稳定性分析[J].桥梁建设,2019,49(02):47-51.ANG C J, DAI J G, ZANG Y, et al. Analysis on static stability of self-anchored suspension bridge with steel box girder. Bridge Construction, 2019,49(02):47-51.
    [81] 黄侨,单彧诗,宋晓东,李林,李维珍.特大跨径地锚式悬索桥静力稳定性分析[J].哈尔滨工业大学学报,2020,52(06):140-148.UANG Q, SHAN Y S, SONG X D, et al. Static stability analysis of long-span earth-anchored suspension bridge[J]. Journal of Harbin Institute of Technology, 2020,52(06):140-148.
    [82] 胡传新,周志勇,孙强.主梁断面形式对大跨斜拉桥风致稳定性的影响研究[J].桥梁建设,2018,48(06):53-57.U C X, ZHOU Z Y, SUN Q. Effect of bridge decks on stability of long-span cable-stayed bridge[J]. Bridge Construction, 2018, 48(06): 53-57.
    [83] 胡朋,颜鸿仁,韩艳,等.山区峡谷非均匀风场下大跨度斜拉桥静风稳定性分析[J].中国公路学报,2019,32(10):158-168.U P, YAN H R, HAN Y, et al. Aerostatic stability of long-span cable-stayed bridge under inhomogeneous wind fields induced by mountain-gorge terrain[J]. China Journal of Highway and Transport, 2019,32(10):158-168.
    [84] 董锐,陈亚钊,郑穆然,黄福云,陈宝春.带L形横撑的大跨CFST桁式拱桥稳定性分析[J].土木工程学报,2020,53(05):89-99+128.ONG R, CHEN Y Z, ZHENG M R, et al. Stability analysis of long-span CFST truss arch bridges with L-shaped bracing[J]. China Civil Engineering Journal, 2020,53(05):89-99+128.
    [85] 施洲,张勇,张育智,夏正春.大跨度铁路下承式钢桁梁柔性拱桥稳定性研究[J].中国铁道科学,2019,40(04):52-58.HI Z, ZHANG Y, ZHANG Z Y, et al. Study on stability of long-span railway through bridge with steel truss girder and flexible arch[J]. China Railway Science, 2019,40(04):52-58.
    [86] 丁敏,王佳佳,蒋秀根,等.圆拱结构平面外稳定分析方法研究[J/OL].西南交通大学学报:1-8.ING M, WANG J J, JIANG X G, et al. Out-of-plane stability analysis method for circular arch structures[J/OL]. Journal of Southwest Jiaotong University, 1-8.
    [87] Cai C S, Chen S R. Framework of vehicle-bridge-wind dynamic analysis[J]. Journal of Wind Engineering Industrial Aerodynamics, 2004, 92: 579–607.
    [88] Camara A, Kavrakov I, Nguyen K, et al. Complete framework of wind-vehicle-bridge interaction with random road surfaces[J]. Journal of Sound and Vibration, 2019, 458: 197–217.
    [89] Zhang M J, Yu J Y, Zhang J Y, et al. Study on the wind-field characteristics over a bridge site due to the shielding effects of mountains in a deep gorge via numerical simulation[J]. Advances in Structural Engineering, 2019, 22: 3055–3065.
    [90] Fang C, Li Y L, Wei K, et al. Vehicle–bridge coupling dynamic response of sea-crossing railway bridge under correlated wind and wave conditions[J]. Advances in Structural Engineering, 2018, 22(4): 893–906.
    [91] Ti Z, Zhang M J, Li Y L, et al. Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads[J]. Engineering Structures, 2019, 196(1): 109287.
    [92] Olmos J M, Astiz M á. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a hige-pier viaduct[J]. Journal of Sound and Vibration, 2018, 419: 63–89.
    [93] Zhu J, Zhang W. Numerical simulation of wind and wave fields for coastal slender bridges[J]. Journal of Bridge Engineering, 2017, 22(3): 1–17.
    [94] Zhu, J, Zhang W, Wu M X. Coupled dynamic analysis of the vehicle-bridge-wind-wave system[J]. Journal of Bridge Engineering, 2018a, 23(8): 04018054.
    [95] Zhu J, Zhang W, Wu M X. Evaluation of ride comfort and driving safety for moving vehicles on slender coastal bridges[J]. Journal of Vibration and Acoustics, 2018b, 140(5): 051012.
    [96] Zhu J, Zhang W, Zheng KF, et al. Seismic design of a long span cable-stayed bridge with fluid viscous dampers[J]. Practice Periodical on Structural Design and Construction, 2016, 21(1): 04015006.
    [97] Zhao H M, Ding Y L, Nagarajaiah S, et al. Behavior analysis and early warning of girder deflections of a steel-truss arch railway bridge under the effects of temperature and trains: case Study[J]. Journal of Bridge Engineering, 2019, 24(1): 05018013.
    [98] 勾红叶, 杨睿. 温度梯度作用下高速铁路桥上行车安全性研究[J]. 铁道工程学报, 2020, 3: 47–52.OU H Y, YANG R. Research on the running safety of high-speed railway on bridges under the action of temperature gradients[J]. Journal of Railway Engineering Society, 2020, 3: 47–52.
    [99] Han Y, Li K, Cai C S, et al. Fatigue Reliability Assessment of Long-Span Steel-Truss Suspension Bridges under the Combined Action of Random Traffic and Wind Loads[J]. Journal of Bridge Engineering, 2019, 25(3): 04020003.
    [100] Camara A, Kavrakov I, Nguyen K, et al. Complete framework of wind-vehicle-bridge interaction with random road surfaces[J]. Journal of Sound and Vibration, 2019, 458: 197-217.
    [101] Xiong Z, Zhu J, Zheng K, et al. Framework of wind-traffic-bridge coupled analysis considering realistic traffic behavior and vehicle inertia force[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205:104322.
    [102] 刘高, 陈上有, 王昆鹏, 等. 跨海公铁两用桥梁车桥风浪流耦合振动研究[J]. 土木工程学报, 2019, 52(4): 72–87.IU G, CHEN S Y, WANG K P, et al. Study on coupling vibration of vehicle- bridge- wind- wave-current system of rail-cum-road sea bridge[J]. China Civil Engineering Journal, 2019, 52(4): 72–87.
    [103] 房忱, 李永乐, 向活跃, 等. 风、浪、流荷载组合对跨海桥梁动力响应的影响[J]. 西南交通大学学报, 2019, 54(5): 908–922.ANG C, LI Y L, XIANG H Y, et al. Dynamic response influences of combination loads of wind, wave, and current on sea-crossing bridges[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 908–922.
    [104] Ma X L, Zhang W. Fatigue life of weldment details of existing orthotropic steel bridge considering the scour effects[J]. Journal of Bridge Engineering, 2019, 25(10): 04020078.
    [105] 乔宏, 夏禾, 杜宪亭. 地震动斜入射对车桥系统地震响应的影响[J]. 哈尔滨工程大学学报, 2019, 40(9): 1629–1635.IAO H, XIA H, DU X T, et al. Effect of oblique incidence of seismic wave on seismic response of a train-bridge system[J]. Journal of Harbin Engineering University, 2019, 40(9): 1629–1635.
    [106] Wang Y W, Zhu J, Zheng K F, Jia H Y, Zhang Y, Wu M X. Dynamic simulation of sea-crossing bridge under combined service and extreme seismic loads[J]. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2020.1859555.1
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:213
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-25
  • 最后修改日期:2021-07-25
  • 录用日期:2021-07-25
文章二维码