2020年钢-混组合结构桥梁研究新进展
CSTR:
作者:
作者单位:

西南交通大学


State-of-the-art research of steel-concrete composite bridges in 2020
Author:
Affiliation:

Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [88]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    钢-混组合结构桥梁作为可实现可持续桥梁工程的结构形式之一,有良好的综合技术经济效益和社会效益,日益受桥梁工程界所欢迎。钢-混组合结构能充分发挥混凝土和钢材各自的材料性能优势,以其整体受力的合理性、经济性、便于施工等突出优点,已广泛应用于结构工程许多领域。为促进我国桥梁建设向装配化、绿色化及智能化的转型升级,在中小跨度桥梁中推广使用钢-混组合结构面临机遇与挑战。从两大类方向对国内外2020年度文章进行搜集、分类、回顾、综述,包括各式常用剪力件研究以及组合梁研究。剪力连接件研究内容涵盖栓钉连接件、PBL连接件、螺栓连接件、进连接件的基本力学性能,以及连接件的耐久与退化性能;组合梁研究进展包括论模型研究,组合效应与空间行为研究,组合梁负弯矩区性能研究,组合梁动力特性研究,组合梁劣化性能与检测加固研究,组合梁施工方法研究。

    Abstract:

    Steel-concrete composite bridges, one of the sustainable structural forms, have excellent composite technical, economic and social results, and are increasingly popular in the bridge engineering. The steel-concrete composite structure can give full play to the material advantages of concrete and steel, and has been widely used in many fields of structural engineering, because of the reasonable load transfer, the economic efficiency, and the ease of construction. In order to accelerate bridge construction to assemblage, greening and intellectualization, promoting the use of steel-concrete composite structures in small and medium-span bridges faces opportunities and challenges. Two major categories, including research on commonly used shear connectors and steel-concrete composite girders in 2020, are collected, categorized and reviewed. Research on shear connectors covers the basic mechanical properties of stud connectors, PBL connectors, bolt connectors, and improved connectors, as well as the durability and degradation properties of connectors. Research on composite beams includes theoretical models, combined effects and spatial behavior, performance in the negative moment zone, dynamic characteristics of composite beams, deterioration performance, detection and reinforcement, construction methods.

    参考文献
    [1] Lewei Tong, Chen Luhua, Wen Ming, et al. Static behavior of stud shear connectors in high-strength-steel–UHPC composite beams[J]. Engineering structures, 2020, 218110827.
    [2] Qiu Zhao, Du Yang, Peng Yunfan, et al. Shear Performance of Short Channel Connectors in a Steel-UHPC Composite Deck[J]. International Journal of Steel Structures, 2020, 20(1): 300-310.
    [3] 林明畅,李新平,郑小红,等. 钢-UHPC组合梁新型胶栓连接件受力研究[J]. 低温建筑技术, 2020, 42(3): 48-50.
    [4] 邵旭东,张瀚文,李嘉,等. 钢-超薄UHPC轻型组合桥面短钢筋连接件抗剪性能研究[J]. 土木工程学报, 2020, 53(01): 39-51.
    [5] 刘永健,吴浩伟,封博文,等. 车轮荷载作用下双工字钢组合梁桥横桥向焊钉拉拔效应[J]. 建筑科学与工程学报, 2020, 37(02): 1-10.
    [6] 安然,王有志,周磊,等. 剪力钉连接件拉剪复合作用试验及计算模型[J]. 长安大学学报(自然科学版), 2020, 40(3): 42-52.
    [7] Kailai Deng, Zeng Xianzhi, Kurata Masahiro, et al. Damage Control of Composite Steel Beams Using Flexible Gel-Covered Studs[J]. J. Struct. Eng., 2020, 146(3): 4019211-4019216.
    [8] Xiaoqing Xu, Zhou Xuhong, Liu Yuqing. Behavior of rubber-sleeved stud shear connectors under fatigue loading[J]. Construction and Building Materials, 2020, 244118386.
    [9] Bozhou Zhuang, Liu Yuqing, Wang Dalei. Shear mechanism of Rubber-Sleeved Stud (RSS) connectors in the steel-concrete interface of cable-pylon composite anchorage[J]. Engineering Structures, 2020, 223111183.
    [10] 黄彩萍,黄志祥,游文峰,等. 橡胶–剪力钉组合剪力连接件力学性能试验[J]. 土木工程与管理学报, 2020, 37(03): 85-90.
    [11] 谢宜琨,方国强,张宁,等. 低温下栓钉连接件的抗剪性能试验研究[J]. 建筑结构, 2020, 50(09): 86-91.
    [12] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
    [13] 刘双,聂玉东,张铭,等. 钢—混组合梁斜拉桥现浇混凝土桥面板关键设计技术研究[J]. 公路, 2020, 65(07): 359-363.
    [14] Yulin Zhan, Yin Chao, Liu Fang, et al. Pushout Tests on Headed Studs and PBL Shear Connectors Considering External Pressure[J]. J. Bridge Eng., 2020, 25(1): 4019121-4019125.
    [15] Yangqing Liu, Wang Sihao, Xin Haohui, et al. Evaluation on out-of-plane shear stiffness and ultimate capacity of perfobond connector[J]. Journal of Constructional Steel Research, 2020, 167105850.
    [16] Gábor Németh, Kovács Nauzika, Jáger Bence, et al. ANALYSIS OF THE EFFECT OF CONCRETE STRENGTH IN EMBEDDED SHEAR CONNECTORS OF STEEL‐CONCRETE CORRUGATED WEB COMPOSITE BRIDGES THROUGH PUSH‐OUT TESTS[J]. ce/papers, 2019, 3(5-6): 128-137.
    [17] Shaohua He, Fang Zhi, Mosallam Ayman-S, et al. Behavior of CFSC-Encased Shear Connectors in Steel-Concrete Joints: Push-Out Tests[J]. J. Struct. Eng., 2020, 164(4): 4020011-4020015.
    [18] Yang Zou, Di Jin, Zhou Jianting, et al. Shear behavior of perfobond connectors in the steel-concrete joints of hybrid bridges[J]. Journal of constructional steel research, 2020, 172106217.
    [19] Tao Yang, Liu Shiyuan, Qin Bingxian, et al. Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams[J]. Journal of Constructional Steel Research, 2020, 173106260.
    [20] Seyedeh-Maryam Hosseini, Mamun Mohammad-Shafiqul, Mirza Olivia, et al. Behaviour of blind bolt shear connectors subjected to static and fatigue loading[J]. Engineering Structures, 2020, 214110584.
    [21] Longqi Li, Zhang Huanfang, Zhou Donghua. Experimental Study of High-Strength Bolt Connected Composite Beams with Web Openings[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020.
    [22] 赵根田,侯智译,高鹏,等. 拟静力作用下群钉连接件抗剪性能研究[J]. 工程力学, 2020, 37(07): 201-213.
    [23] 荣学亮,黄侨,赵品. 考虑疲劳损伤的栓钉连接件抗剪承载力研究[J]. 中国公路学报, 2013, 26(04): 88-93.
    [24] 张建东,毛泽亮,叶遇春,等. 锈蚀后间断式开孔钢板连接件的抗剪性能[J]. 南京工业大学学报(自然科学版), 2020, 42(5): 600-607.
    [25] Dipankar Das, Ayoub And-Ashraf. Mixed Formulation of Inelastic Composite Shear Beam Element[J]. J. Struct. Eng., 2020, 146(10): 4020221-4020222.
    [26] Md.-Alhaz Uddin, Alzara Majed-Abdulrahman, Mohammad Noor, et al. Convergence studies of finite element model for analysis of steel-concrete composite beam using a higher-order beam theory[J]. Structures, 2020, 272025-2033.
    [27] David Henriques, Gon?alves Rodrigo, Sousa Carlos, et al. GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects[J]. Thin-Walled Structures, 2020, 150106706.
    [28] Li Zhu, Wang Jia-Ji, Li Ming-Jie, et al. Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip[J]. Archives of Civil and Mechanical Engineering, 2020, 20(4).
    [29] Jian-Ping Lin. Static Analysis of Composite Beams Using Collocation Technique by Considering Linear and Nonlinear Partial Interactions[J]. J. Eng. Mech., 2020, 146(2): 4019121-4019125.
    [30] Yulin Feng, Jiang Lizhong, Zhou Wangbao. Improved Analytical Method to Investigate the Dynamic Characteristics of Composite Box Beam with Corrugated Webs[J]. International Journal of Steel Structures, 2020, 20(1): 194-206.
    [31] Jian-Ping Lin, Wu ZhiBo, Yin Ying, et al. Analysis of Shear Connector of Steel–Concrete Composite Box-Girder Bridge Considering Interfacial Bonding and Friction[J]. International Journal of Steel Structures, 2020, 20(2): 452-463.
    [32] Amilton-R Silva, Das Neves Francisco-De-A, Sousa Jo?o-B-M. Optimization of partially connected composite beams using nonlinear programming[J]. Structures, 2020, 25743-759.
    [33] Wei Ji, Luo Kui, Zhang Jingwei. Analysis of continuous PC box girder bridges with CSWs by using equivalent computational model[J]. Archive of applied mechanics (1991), 2020.
    [34] Madhusudan-G Kalibhat, Upadhyay Akhil. Numerical study on the deformation behavior of steel concrete composite girders considering partial shear interaction[J]. Structures, 2020, 23437-446.
    [35] B Hillhouse, Prinz G-S. Effects of Clustering and Flange Surface Friction on Headed Shear Stud Demands[J]. J. Bridge Eng., 2020, 25(6): 4020021-4020026.
    [36] Muhammad-Kashif Razzaq, Khaled Sennah, Ghrib And-Faouzi. Moment and Shear Distribution Factors for the Design of Simply Supported Skewed Composite Steel I-Girder Bridges Due to Dead Loading[J]. J. Bridge Eng., 2020, 25(8): 4020060-4020061.
    [37] Jing Zhang, Hu Xiamin, Fu Weijie, et al. Experimental and theoretical study on longitudinal shear behavior of steel-concrete composite beams[J]. Journal of Constructional Steel Research, 2020, 171106144.
    [38] 李杨,任沛琪,丁井臻,等. 钢-混凝土双面组合作用梁基本力学性能试验研究与数值模拟[J]. 工程力学, 2020, 37(05): 82-93.
    [39] Ying-Jie Zhu, Wang Jia-Ji, Nie Xin, et al. Structural performance of slabs in composite box girder considering compressive membrane action[J]. Engineering Structures, 2020, 212110457.
    [40] Siyu Kong, Zhuang Liangdong, Tao Muxuan, et al. Load distribution factor for moment of composite bridges with multi-box girders[J]. Engineering Structures, 2020, 215110716.
    [41] Da Xiang, Liu Yuqing, Yang And-Fei. Numerical and Theoretical Analysis of Slab Transverse-Moment Distributions in Twin-Girder Crossbeam Composite Bridges[J]. J. Bridge Eng., 2020, 25(3): 4020001-4020004.
    [42] 李立峰,程子涵,冯威,等. 不等横向联结系对钢-混组合梁桥荷载横向分布的影响研究[J]. 铁道科学与工程学报, 2020, 17(11): 2832-2839.
    [43] 闫林君,张经伟,罗奎. 装配式多主梁钢-混组合梁桥的荷载横向分布研究[J]. 公路交通科技, 2020, 37(03): 59-69.
    [44] Li Zhu, Wang Jia-Ji, Li Xuan, et al. Experimental and Numerical Study of Curved SFRC and ECC composite beams with Various Connectors[J]. Thin-Walled Structures, 2020, 155106938.
    [45] Junping Liu, Lai Zhichao, Chen Baochun, et al. Experimental behavior and analysis of steel-laminated concrete (RC and UHPC) composite girders[J]. Engineering Structures, 2020, 225111240.
    [46] Zachary-B Haber, Graybeal Benjamin-A, Nakashoji And-Brian. Ultimate Behavior of Deck-to-Girder Composite Connection Details Using UHPC[J]. J. Bridge Eng., 2020, 25(7): 4020031-4020038.
    [47] Yuqing Hu, Meloni M, Cheng Zhao, et al. Flexural performance of steel-UHPC composite beams with shear pockets[J]. Structures, 2020, 27570-582.
    [48] 马印平,刘永健,龙辛,等. 钢管混凝土组合桁梁受弯承载力简化计算方法研究[J]. 建筑结构学报, 2020, 41(5): 76-84.
    [49] Weiwei Lin, Lam. Heang, Yoda Teruhiko. Experimental Study on Steel – Concrete Composite Twin I-Girder Bridges[J]. J. Bridge Eng., 2020, 25(1): 4019121-4019129.
    [50] Alexandre Rossi, Nicoletti Renato-Silva, de Souza Alex-Sander-Clemente, et al. Numerical assessment of lateral distortional buckling in steel-concrete composite beams[J]. Journal of Constructional Steel Research, 2020, 172106192.
    [51] Atsushi Suzuki, Abe Kanako, Kimura And-Yoshihiro. Restraint Performance of Stud Connection during Lateral-Torsional Buckling under Synchronized In-Plane Displacement and Out-of-Plane Rotation[J]. J. Struct. Eng., 2020, 146(4): 4020021-4020029.
    [52] Alejandro-Giraldo Soto, Caldentey Alejandro-Pérez, Peiretti Hugo-Corres, et al. Experimental behaviour of steel-concrete composite box girders subject bending, shear and torsion[J]. Engineering Structures, 2020, 206110169.
    [53] Jinsong Zhu, Guo Xiaoyu, Kang Jingfu, et al. Numerical and theoretical research on flexural behavior of steel-UHPC composite beam with waffle-slab system[J]. Journal of Constructional Steel Research, 2020, 171106141.
    [54] Jin-Song Zhu, Wang Yong-Guang, Yan Jia-Bao, et al. Shear behaviour of steel-UHPC composite beams in waffle bridge deck[J]. Composite Structures, 2020, 234111678.
    [55] Cong Zhou, Li Lifeng, Wang Jianqun. Modified bar simulation method for shear lag analysis of non-prismatic composite box girders with corrugated steel webs[J]. Thin-Walled Structures, 2020, 155106957.
    [56] Yiyan Chen, Dong Jucan, Tong Zhaojie, et al. Flexural behavior of composite box girders with corrugated steel webs and trusses[J]. Engineering Structures, 2020, 209110275.
    [57] Zhe Zhang, Tang Yi, Li Jiao, et al. Torsional behavior of box-girder with corrugated web and steel bottom flange[J]. Journal of Constructional Steel Research, 2020, 167105855.
    [58] P?nar Ar?ko?lu, Baran Eray, Topkaya Cem. Behavior of channel connectors in steel-concrete composite beams with precast slabs[J]. Journal of Constructional Steel Research, 2020, 172106167.
    [59] Ahmed-S-H Suwaed, Karavasilis Theodore-L. Demountable steel-concrete composite beam with full-interaction and low degree of shear connection[J]. Journal of Constructional Steel Research, 2020, 171106152.
    [60] Yanping Zhu, Zhang Yang, Hussein Husam-H, et al. Flexural Study on UHPC – Steel Composite Beams with Joints under Negative Bending Moment[J]. J. Bridge Eng., 2020, 25(10): 4020081-4020084.
    [61] 刘新华,周聪,张建仁,等. 钢-UHPC组合梁负弯矩区受力性能试验[J]. 中国公路学报, 2020, 33(05): 110-121.
    [62] Jianan Qi, Cheng Zhao, Wang Jingquan, et al. Flexural behavior of steel-UHPFRC composite beams under negative moment[J]. Structures, 2020, 24640-649.
    [63] Yang Zhang, Cai Shukun, Zhu Yanping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206110134.
    [64] Jiansheng Fan, Gou Shuangke, Ding Ran, et al. Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210110309.
    [65] Xuhong Zhou, Men Pengfei, Di Jin, et al. Experimental investigation of the vertical shear performance of steel–concrete composite girders under negative moment[J]. Engineering Structures, 2020, 111487.
    [66] Madhusudan-G Kalibhat, Upadhyay Akhil. Numerical modeling of continuous steel concrete composite girders considering cracking of concrete[J]. Structures, 2020, 271313-1323.
    [67] 段树金,王园园,梁显,等. 负弯矩作用下钢-混凝土组合与叠合梁静力性能试验研究[J]. 铁道学报, 2020, 42(09): 120-126.
    [68] 莫时旭,周梓滔,李君谊. 不同参数条件对充填式窄幅钢箱-混凝土组合连续梁裂缝的影响[J]. 建筑结构, 2020, 50(02): 101-106.
    [69] Yu-Hang Wang, Yu Jie, Liu Jie-Peng, et al. Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment[J]. Journal of Constructional Steel Research, 2020, 167105667.
    [70] Li Zhu, Wang Hong-Liang, Han Bing, et al. Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag[J]. Thin-Walled Structures, 2020, 157107060.
    [71] 严战友,王旭蕊,李向国,等. 移动荷载作用下两跨钢-混组合连续梁桥面铺装动力响应[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(04): 1-9.
    [72] Xun Zhang, Li Xi, Liu Rui, et al. Dynamic properties of a steel–UHPC composite deck with large U-ribs: Experimental measurement and numerical analysis[J]. Engineering Structures, 2020, 213110569.
    [73] Ma?gorzata Abramowicz, Berczyński Stefan, Wróblewski Tomasz. Modelling and parameter identification of steel–concrete composite beams in 3D rigid finite element method[J]. Archives of Civil and Mechanical Engineering, 2020, 20(4).
    [74] 项贻强,邱政,何百达,等. 具有体外预应力索的快速施工群钉式钢-混组合小箱梁自振特性分析[J]. 中国公路学报, 2020, 33(01): 100-110.
    [75] Huy-Van Pham, Yakel Aaron, Azizinamini Atorod. Experimental investigation of redundancy of twin steel box-girder bridges under concentrated loads[J]. Journal of Constructional Steel Research, 2020, 106440.
    [76] 项贻强,何百达. 考虑疲劳损伤的栓钉式组合梁剩余承载力计算方法[J]. 湖南大学学报(自然科学版), 2020, 47(09): 33-39.
    [77] Chunxiu Han, Zhang Jiuchang, Zhou Donghua, et al. Computing Creep Secondary Internal Forces in Continuous Steel – Concrete Composite Beam Constructed through Segmented Pouring[J]. J. Struct. Eng., 2020, 146(3): 4020001-4020003.
    [78] Rong Liu, Feng Zhiqiang, Ye Hengda, et al. Stress Redistribution of Headed Stud Connectors Subjected to Constant Shear Force[J]. International Journal of Steel Structures, 2020, 20(2): 436-451.
    [79] 周大为,邓年春,石拓,等. 大型钢管混凝土拱桥温度梯度试验研究[J]. 铁道科学与工程学报, 2020, 17(8): 2013-2020.
    [80] Chenyu Zhang, Liu Yongjian, Liu Jiang, et al. Validation of long-term temperature simulations in a steel-concrete composite girder[J]. Structures, 2020, 271962-1976.
    [81] Huanting Zhou, Hao Conglong, Zheng Zhiyuan, et al. Numerical Studies on Fire Resistance of Prestressed Continuous Steel–Concrete Composite Beams[J]. Fire Technology, 2020, 56(3): 993-1011.
    [82] Moon-Soo Kang, Kang Jun-Won, Kee Seong-Hoon, et al. Damage Evaluation of Composite Beams Under Fire Conditions[J]. International Journal of Steel Structures, 2020, 20(6): 1996-2008.
    [83] Gang Zhang, Kodur Venkatesh, Song Chaojie, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165105823.
    [84] 康俊涛,章豪. 落石撞击下钢混组合梁桥上部结构动力响应分析[J]. 中山大学学报(自然科学版), 2020, 1-10.
    [85] Kevin-F McMullen, Zaghi And-Arash-E. Experimental Evaluation of Full-Scale Corroded Steel Plate Girders Repaired with UHPC[J]. J. Bridge Eng., 2020, 25(4): 4020011.
    [86] Da Wang, Wang Lei, Tang Cheng. Mechanical Characteristic Analysis of Corrugated Steel Webs Using Asynchronous Construction Technology[J]. KSCE Journal of Civil Engineering, 2020.
    [87] Jun He, Li Xiang, Li Chuanxi, et al. A novel asynchronous-pouring-construction technology for prestressed concrete box girder bridges with corrugated steel webs[J]. Structures, 2020, 271940-1950.
    [88] Man Zhou, Liu Yunyi, Wang Kangjian, et al. New Asynchronous-Pouring Rapid-Construction Method for Long-Span Prestressed Concrete Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Construction Engineering and Management, 2020, 146(2): 501902
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:559
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-28
  • 最后修改日期:2021-07-28
  • 录用日期:2021-07-29
文章二维码