桥梁健康监测2020年度研究进展
CSTR:
作者:
作者单位:

西南交通大学

基金项目:

国家自然科学基金(51978577、51678489);国家重点研发计划(2016YFC0802202);国家重点基础研究发展计划(2013CB0363);中电建路桥集团资助科研项目(SCMQ-201728-ZB)


State-of-the-art review of the bridge health monitoring in 2020
Author:
Affiliation:

Southwest Jiaotong University

Fund Project:

National Natural Science Foundation of China (No. 51978577, 51678489); National Key R&D Program of China (No. 2016YFC0802202); National Key Basic Research Program of China (No. 2013CB0363); Science and Technology Project of Power China (No. SCMQ-201728-ZB).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    桥梁健康监测系统利用通讯传感设备远程记录运营中的结构持续响应,通过对信号数据的处理分析实现桥梁结构的实时预警与安全评估,从而达到保护结构正常运营、延长结构使用寿命、指导桥梁结构管养与维护决策的目的。桥梁健康监测技术作为桥梁工程领域新兴的分支,已逐渐成为一个热门研究方向。为了促进该领域研究进一步发展,指导健康监测系统在桥梁工程中更高效的应用,对桥梁健康监测系统的信号降噪、信号预警、模态参数识别、有限元模型修正、损伤识别、状态预测与评估等关键技术方法的研究现状进行了详细介绍,并对2020年度内相关研究进展及应用进行了总结与评述,最终发现机器学习方法正越来越广泛地应用到桥梁健康监测各项关键技术的现阶段研究中。

    Abstract:

    The bridge health monitoring system (BHMS) continuously measures and records the structural responses by using a variety of sensors and communication devices in the bridge operation process. The automatic analysis of signal data can be done effectively in the BHMS to fulfill the timely danger warning and safety assessment. The BHMS leads to the better transportation operation of bridges, the longer service life of bridges, and the more reasonable determination of the bridge management and maintenance for engineers. For the sake of the more efficient application of health monitoring system in bridge engineering, this paper summarizes the current states of several representative BHMS techniques: signal denoising, signal warning, modal parameter identification, finite element model updating, damage identification, condition prediction and assessment. Then, the related researches and applications of these key techniques during 2020 are summarized and discussed. Consequently, it is found that the machine learning methods have been more and more widely used in the current research of key technologies of the bridge health monitoring.

    参考文献
    [1] SUN L M, SHANG Z Q, XIA Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection [J]. Journal of Structural Engineering, 2020, 146(5):04020073.
    [2] 单德山, 罗凌峰, 李乔. 桥梁健康监测2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(05):119-129.
    [3] 李小珍, 郑净, 宋立忠,等. 轨道交通桥梁减振降噪2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(05): 223-234.
    [4] 雷晓燕, 张新亚, 罗锟. 高架轨道桥梁结构振动与噪声预测方法及控制研究进展[J]. 铁道学报, 2020, 42(12):12.
    [5] 熊春宝, 王猛, 于丽娜. 桥梁GNSS-RTK变形监测数据的多滤波联合去噪处理[J]. 测绘通报, 2020(7): 93-96.
    [6] 熊春宝, 于丽娜, 常翔宇. 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(04):52-59.
    [7] 杨海涛. 基于多尺度局部模式滤波的桥梁动力信号噪声模态识别方法[D]. 吉林大学, 2020.
    [8] 王尧伟. 经验小波变换在桥梁模态参数识别中的最优组合形式研究[D]. 西南交通大学, 2020.
    [9] 黄书亭, 刘福寿, 李国芬,等. 改进EWT用于大跨径桥梁模态参数识别[J]. 噪声与振动控制, 2020, 40(6):7.
    [10] 刘洋. 基于结构计算与海量样本数据统计的桥梁预警指标方法研究[D]. 安徽建筑大学, 2020.
    [11] 魏鑫, 吴学伟, 程培嵩. 基于组件式GIS的桥梁健康监测数据集成及预警-红岭高架桥为例[J]. 公路工程, 2020, 45(6).
    [12] 胡铁明, 马钦, 齐璐. T型刚构桥竖向位移监测多级预警阈值设定[J]. 沈阳大学学报(自然科学版). 2020, 32(05):410-415.
    [13] Ni Y Q, Wang Y W, Zhang C. A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data [J]. Engineering Structures, 2020, 212:110520.
    [14] Cao S, Zhang Y, Tian H, et al. Drive comfort and safety evaluation for vortex-induced vibration of a suspension bridge based on monitoring data[J]. Journal of Wind Engineering Industrial Aerodynamics, 2020, 204:104266.
    [15] 徐一超, 张宇峰. 基于健康监测系统的桥梁船撞报警指标研究与应用[J]. 黑龙江交通科技, 2020, 43 (10):110-111+114.
    [16] 毛琳, 林旭, 代力. 中小跨径桥梁结构安全状态评估研究[J]. 公路工程, 2020, 45(5):214-219.
    [17] Soy?z S, Aytulun E, Apayd?n N, et al. Modal identification of the first Bosporus bridge during hanger replacement, Structure and Infrastructure Engineering, 2020, 16(12):1605-1615.
    [18] Jian X, Xia Y, Sun L. An indirect method for bridge mode shapes identification based on wavelet analysis[J]. Structural Control and Health Monitoring, 2020, 2630.
    [19] Kaloop M R, Elbeltagi E, Hu J W. Estimating the Dynamic Behavior of Highway Steel Plate Girder Bridges Using Real-Time Strain Measurements[J]. Applied Sciences, 2020, 10(12).
    [20] 刘欣悦. 考虑温度效应的大跨度悬索桥应变模态参数识别[D]. 西南交通大学, 2020.
    [21] 熊文, 程瑜. 基于高帧视频分析的桥梁振动与模态非接触识别算法[J]. 东南大学学报(自然科学版), 2020, 050(003):433-439.
    [22] 陈永高, 钟振宇. 环境激励下桥梁结构模态参数识别的改进随机子空间算法[J]. 振动与冲击, 2020, 39(16):196-204.
    [23] 祝青鑫, 王浩, 茅建校,等. 基于聚类分析的桥梁结构模态参数自动识别方法[J]. 东南大学学报(自然科学版), 2020, 50(5):837-843.
    [24] 徐恒志, 刘才玮, 苗吉军,等. 基于静动力测试的混凝土T形梁有限元模型修正[J]. 青岛理工大学学报, 2020(5).
    [25] 李坤, 张宇鑫. 基于灵敏度矩阵分析的钢桁架桥模型修正[J]. 建筑钢结构进展, 2020, 23(1):7.
    [26] 肖祥, 赵曼, 陈一,等. 基于实测影响线的大跨度桥梁有限元模型修正[J]. 工程与建设, 2020, 34(01):58-62.
    [27] 康志锐, 张巍, 宋帅,等. 基于响应面的波形钢腹板PC组合梁桥有限元模型修正方法的试验研究[J]. 铁道科学与工程学报, 2020, 17(05):132-138.
    [28] 冀伟, 邵天彦. 波形腹板钢箱-混凝土箱梁桥的有限元模型修正[J]. 西南交通大学学报, 2020, 56(1):1-11.
    [29] 杨雅勋, 杨福利, 陈东. 改进响应面法在桥梁结构有限元模型修正中的应用[J]. 公路交通科技, 2020, 37(10):10.
    [30] 高鹏, 孙宁. 基于实测数据的高墩大跨混凝土梁桥高精度有限元模拟方法[J]. 公路, 2020, 65(5):8.
    [31] 王生武, 李泽东, 任伟新. 一座飞燕式系杆拱桥的有限元模型修正[J]. 中外公路, 2020, 40(6):7.
    [32] 于振刚, 李岩, 钟以琛. 一种基于元模型的桥梁静动力有限元模型修正方法[J]. 中外公路, 2020, 40(04):88-93.
    [33] 秦世强, 张亚州, 康俊涛. 基于改进稳态遗传算法的桥梁有限元模型修正[J]. 中山大学学报(自然科学版), 2020, 59(4):79-88.
    [34] 康俊涛、张亚州、秦世强. 考虑多峰值同时寻优的结构有限元模型修正[J]. 兰州大学学报(自然科学版), 2020, 56(05):117-125.
    [35] Xia Z, Li A, Li J, et al. Model updating of an existing bridge with high-dimensional variables using modified particle swarm optimization and ambient excitation data [J]. Measurement, 2020, 159:107754.
    [36] Tran-Ngoc H, He L, Reynders E, et al. An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization [J]. Journal of Sound and Vibration, 2020, 476:115315.
    [37] 何淼. 大跨度悬索桥有限元模型不确定性修正[D]. 西南交通大学, 2020.
    [38] Tan C, Zhao H, Obrien E J, et al. Extracting mode shapes from drive-by measurements to detect global and local damage in bridges [J]. Structure and Infrastructure Engineering, 2020(19).
    [39] Liu J, Chen S, Bergés M, et al. Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction [J]. Mechanical Systems and Signal Processing, 2020, 136:106454.
    [40] 李振环. 基于主成分分析和灰色关联分析的梁桥结构损伤检测[D]. 2020.
    [41] 王昊. 基于视觉测量及振动理论的桥梁结构损伤识别研究[D]. 昆明理工大学, 2020.
    [42] 杨建喜, 张利凯, 李韧,等. 联合卷积与长短记忆神经网络的桥梁结构损伤识别研究[J]. 铁道科学与工程学报, 2020, 17(8):1893-1902.
    [43] Kilic G, Caner A. Augmented reality for bridge condition assessment using advanced non-destructive techniques [J]. Structure and Infrastructure Engineering, 2020.
    [44] J.Obrien E, Heitner B, ?nidaric A, et al. Validation of bridge health monitoring system using temperature as a proxy for damage [J]. Structure Control and Health Monitoring, 2020, e2588.
    [45] 张安安, 邓芳明, 吴翔. 基于DAE和SVR的铁路桥梁损伤定位与识别技术[J]. 公路, 2020, 5(5):106-110.
    [46] Khandel O, Soliman M, Royce W, et al. Performance assessment of prestressed concrete bridge girders using fiber optic sensors and artificial neural networks[J]. Structure and Infrastructure Engineering, 2020.
    [47] Deng Y, Zhang M, Feng D, et al. Predicting fatigue damage of highway suspension bridge hangers using weigh-in-motion data and machine learning [J]. Structure and Infrastructure Engineering, 2020.
    [48] Li G, Han W, Chen X, et al. Wear evaluation on slide bearings in expansion joints based on cumulative displacement for long-span suspension bridge under monitored traffic flow [J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019106.
    [49] Liu H, Zhang Y. Bridge condition rating data modeling using deep learning algorithm [J]. Structure and Infrastructure Engineering, 2020.
    [50] Lu N, Liu Y, Noori M, et al. System reliability assessment of cable-supported bridges under stochastic traffic loads based on deep belief networks [J]. Applied sciences, 2020, 10:8049.2
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:193
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-02
  • 最后修改日期:2021-08-02
  • 录用日期:2021-08-03
文章二维码