2020年度桥梁结构数值分析研究进展
CSTR:
作者单位:

西南交通大学


State-of-the-art review of the Numerical simulation of ridge structure in 2020
Author:
Affiliation:

South West Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着计算机技术不断发展及计算理论研究的深入,数值方法成为了分析桥梁结构力学行为的主要的方法。通过桥对梁结构的数值模拟,能获得在各种复杂作用下的力学行为和响应,在效率和适应性方面远高于解析方法和模型试验。以近年来国内外相关的研究文献成果为基础,对数值分析技术在桥梁结构分析中的应用及最新研究成果进行了综述。重点关注了与桥梁结构主要力学行为分析相关的有限元数值模拟相关的理论与方法,对桥梁结构数值化模拟方法中的梁的理论最新研究方向、主流的非线性分析方法与技术、桥梁结构材料的多种数值化本构模型研究进展,桥梁结构腐蚀环境下力学性能的时效性、耐久性评价的有限元方法,以及基于梁理论的组合结构的数值模拟方法等最新研究成果进行了综述,对这一领域需要进一步研究和解决的问题进行了讨论及展望。

    Abstract:

    Zhou Linyuan (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031,China) Abstract: With the development of computer technology and in-depth study of computation theory, numerical analysis has become the major analysis method for bridge structure. At present, through the numerical simulation of bridge structure, the mechanical behavior and response under various complex actions can be obtained, with which the calculation efficiency and adaptability are far higher than those of analytical method and model test. Based on the relevant research results at home and abroad in recent years, the application of numerical analysis technology in bridge structure analysis and the latest research results are summarized. This paper mainly focuses on the finite element numerical simulation technology related to the analysis of the main mechanical behavior of bridge structure, including the latest research direction of beam theory, the nonlinear analysis methods and technologies, the research progress of a variety of numerical constitutive models for bridge structure materials, and the timeliness of Mechanical properties of bridge structures under corrosive environment. The new development of finite element method and numerical simulation method of composite structure based on beam theory are summarized. Finally, the problems that need to be further studied and solved in this field are analyzed and prospected.

    参考文献
    [1] Walter D, Pilkey, Analysis and design of elastic beams computational methods[M], JOHN WILEY & SONS, INC ,2002,https://doi.org/10.1115/1.1566398.
    [2] 黄俊,箱梁剪力滞效应一维有限元模型及评价方法[D],合肥工业大学,2020.
    [3] HUANG J, One-dimensional finite element model and evaluation method of box girder shear lag [D], Heifei University of Technology, 2020, (in Chinese)http://cdmd.cnki.com.n/Article/CDMD-10359-1020419201.htm.
    [4] [3] 杨绿峰,周月娥,曾有凤.箱型梁附加挠度与剪力滞效应的一维有限元分析[J].土木工程学报,2013,46(3):71-77.
    [5] http://www.cnki.com.n/Article/CJFDTotal-TMGC201304012.htm.
    [6] YANG LF, ZHOU YE, ZENG YF, One-dimensional finite element analysis of additional deflection and shear lag effect of box girder [J], China Civil Engineering Journal, 2013, 46(3):p71-77, (in Chinese) http://www.cnki.com.n/Article/CJFDTotal-TMGC201304012.htm.
    [7] [4] 张元海,李琳,林丽霞.以附加挠度作为广义位移时薄壁箱梁剪力滞效应的梁段有限元分析[J].土木工程学报,2013.46(10):100-107. http://www.cnki.com.n/Article/CJFDTotal-TMGC201310015.htm.
    [8] ZHANG YH, LI L, LIN LX, Finite element analysis of the shear lag effect of thin-walled box girder with additional deflection as generalized displacement[J], China Civil Engineering Journal, 2013,46(10):p100-107, (in Chinese) http://www.cnki.com.n/Article/CJFDTotal-TMGC201310015.htm.
    [9] [5] 姚晓东, 箱形梁剪力滞效应分析中的位移函数研究[D],兰州交通大学,2019.
    [10] YAO X D, Research on displacement function in analysis of shear lag effect of box girder[D], Lanzhou Jiaotong University, 2019, (in Chinese)http://cdmd.cnki.com.n/article/cdmd-10732-1019211964.htm.
    [11] [6] Xiayuan Li, Shui Wan, Yuanhai Zhang, Maoding Zhou, Yilung Mo, Beam finite element for thin-walled box girders considering shear lag and shear deformation effects, Engineering Structures, Volume 233,2021,https://doi.org/10.1016/j.engstruct.2021.111867.
    [12] [7] Yi-Qun Tang, Er-Feng Du, Jing-Quan Wang, Jia-Nan Qi, A co-rotational curved beam element for geometrically nonlinear analysis of framed structures, Structures, Volume 27,2020,P 1202-1208,https://doi.org/10.016/j.istruc.2020.07.030.
    [13] [8] Jean-Marc Battini, Costin Pacoste, Co-rotational beam elements with warping effects in instability problems, Computer Methods in Applied Mechanics and Engineering, Volume 191, Issues 17–18,2002,P1755-1789,https://doi.org/10.1016/S0045-7825(01)00352-8.
    [14] [9] Yi-Qun Tang, Yao-Peng Liu, Siu-Lai Chan, Er-Feng Du, An innovative co-rotational pointwise equilibrating polynomial element based on Timoshenko beam theory for second-order analysis, Thin-Walled Structures, Volume 141,2019,P 15-27,https://doi.org/10.1016/j.tws.2019.04.001.
    [15] [10] Gang Wang, Zhaohui Qi, Jinshuai Xu, A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems, Computer Methods in Applied Mechanics and Engineering, Volume 360,2020,https://doi.org/10.1016/j.cma.2019.112701.
    [16] [11] Wenxiong Li, Haitao Ma, A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement, Thin-Walled Structures, Volume 152,2020,https://doi.org/ 10.1016/j.tws.2020.106748.
    [17] [12] Kosar Samadi-Aghdam, Pouya Fahimi, Majid Baniassadi, Mostafa Baghani, Development and implementation of a geometrically nonlinear beam theory model for SMA composite beams with asymmetric behavior, Composite Structures, Volume 259,2021,https://doi.org/10.1016/j.compstruct.2020.113417.
    [18] [13] M,Patni,S,Minera, C, Bisagni, P,M, Weaver, A, Pirrera, Geometrically nonlinear finite element model for predicting failure in composite structures, Composite Structures, Volume 225,2019,https://doi.org/10.1016/ j.compstruct.2019.111068.
    [19] [14] Liang Wang, Q,D, Yang, 3D geometrically nonlinear augmented finite element method for arbitrary cracking in composite laminates, Computers & Structures, Volume 239,2020,https://doi.org/10.1016/j.compstruc. 2020.106327.
    [20] [15] Bathe K-J, Finite Element Procedures[M], Klaus-Jurgen Bathe; 2006,
    [21] [16] Kaljevi′c I, Patnaik SN, Hopkins DA, Development of finite elements for two-dimensional structural analysis using the integrated force method, Comput Struct Elsevier 1996;59(4):p691–706,https://doi.org/10.1016/0045-7949(95)00294-4.
    [22] [17] Zhang C, Liu X, A large increment method for material nonlinearity problems[J], Adv Struct Eng 1997;1(2):p99–110,
    [23] [18] Hamdy Abou-Elfath, Simplified fiber beam-column model for inelastic analysis of moment-resisting steel frames[J],Alexandria Engineering Journal, Volume 57, Issue 4,2018,p2865-2877,https://doi.org/10.1016/ j.aej.2018.02.001.
    [24] [19] Giovanni Minafò, Gaetano Camarda, Use of fiber-section beam elements for modelling the monotonic flexural response of RC jacketed columns[J],Engineering Structures, Volume 228,2021,https://doi.org/10.1016/ j.engstruct.2020.111503.
    [25] [20] Zuo-Lei Du, Zhi-Xia Ding, Yao-Peng Liu, Siu-Lai Chan, Advanced flexibility-based beam-column element allowing for shear deformation and initial imperfection for direct analysis[J], Engineering Structures, Volume 199,2019,https://doi.org/10.1016/j.engstruct.2019.109586.
    [26] [21] Cosmin G, Chiorean, Ioana V, Marchis, A second-order flexibility-based model for steel frames of tapered members[J],Journal of Constructional Steel Research, Volume 132,2017,p43-71,https://doi.org/10.1016/ j.jcsr.2017.01.002.
    [27] [22] B, Pantò, S, Rapicavoli D, Caddemi, I, Caliò, A smart displacement based (SDB) beam element with distributed plasticity[J], Appl, Math, Model, 44 ,2017, p336–356,https://doi.org/10.1016/j.apm.2017.01.018.
    [28] [23] Bartolomeo Pantò, Davide Rapicavoli, Salvatore Caddemi, Ivo Caliò, A Fibre Smart Displacement Based (FSDB) beam element for the nonlinear analysis of reinforced concrete members, International[J], Journal of Non-Linear Mechanics, Volume 117,2019,https://doi.org/10.1016/j.ijnonlinmec.2019.07.07.
    [29] [24] J, Hoshikuma, K, Kawashima, K, Nagaya, A, Taylor, Stress–strain model for confined reinforced concrete in bridge piers[J], J Struct Eng, 123 (1997), p 624-633,https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%281997%29123%3A5%28624%29.
    [30] [25] Ali Khajeh Samani, Mario M, Attard, A stress–strain model for uniaxial and confined concrete under compression[J], Engineering Structures, Volume 41,2012,p335-349,https://doi.org/10.1016/j.engstruct.2012.03.027.
    [31] [26] D, Cusson, F, De Larrard, C, Boulay, P, Paultre, Strain localization in confined high-strength concrete columns,[J] Struct Eng, 122 (1996), p1055-1061,https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%281996%29122%3A9%281055%29.
    [32] [27] S, Razvi, M, Saatcioglu Confinement model for high-strength concrete[J], J Struct Eng, 125 (1999), p281-289,https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%281999%29125%3A3%28281%29.
    [33] [28] T, Wee, M, Chin Stress–strain relationship of high-strength concrete in compression[J], J Mater Civil Eng, 8 (1996), p70, https://ascelibrary.org/doi/10.1061/%28ASCE%290899-1561%281996%298%3A2% 2870%29.
    [34] [29] LEE J, FENVES G L, Plastic-damage model for cyclic loading of concrete structures[J],Journal of engineering mechanics,1998,124 (8):892-900,
    [35] [30] 聂建国,王宇航. ABAQUS中混凝上本构模型用以模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-67.
    [36] NIE J G , WANG Y H, Comparative study on application of constitutive models in ABAQUS to simulate the static behavior of concrete structures [J], Engineering Mechanics,2013,30(4):59-67, (in Chinese)http://www.cnki.com.n/article/cjfdtotal-gclx201304009.htm.
    [37] [31] 李杰,吴建营.混凝上弹塑性损伤本构模型研究I:基本公式[J],土木工程学报,2005,38(9):14- 20.
    [38] LI J, WU J Y, Study on elastoplastic damage constitutive model of concrete I: basic formula [J], China Civil Engineering Journal,2005,38(9):p14- 20, (in Chinese)http://www.cnki.com.n/Article/CJFDTotal-TMGC200509002.htm.
    [39] [32] 李清富,匡一航,郭威.CDP模型参数计算及取值方法验证[J].郑州大学学报(工学版):2020(6). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZZGY20201203000&v=7XpwrkMUbiX5Zip%25mmd2B76OvRLPq1yq5pChSAga7cCq8IXRYPGBaPyRJLzjyR2cBGAqY.
    [40] LI Q F, KUANG Y H, GUO W, CDP model parameter calculation and verification of value method [J], Journal of Zhengzhou University (Engineering Science):2020(6), (in Chinese)https://kns.cnki.net/ kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZZGY20201203000&v=7XpwrkMUbiX5Zip%25mmd2B76OvRLPq1yq5pChSAga7cCq8IXRYPGBaPyRJLzjyR2cBGAqY.
    [41] [33] Changyong Li, Qi Li, Xiaoke Li, Xiaoyan Zhang, Shunbo Zhao, Elastic-plastic Bending Behaviors of Steel Fiber Reinforced Expanded-shale Lightweight Concrete Beams Analyzed by Nonlinear Finite-element Method, Case Studies in Construction Materials, Volume 13,2020, https://doi.org/10.1016/j.cscm.2020.e00372.
    [42] [34] Augusto Gomes, Júlio Appleton, Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling[J],Engineering Structures, Volume 19, Issue 10,1997,822-826, https://doi.org/10.1016/S0141-0296(97)00166-1.
    [43] [35] M,Bosco,E,Ferrara,A,Ghersi,E,M,Marino, P,P, Rossi, Improvement of the model proposed by Menegotto and Pinto for steel[J],Engineering Structures, Volume 124,2016, 442-456,https://doi.org/10.1016/j.engstruct. 2016.06.037.
    [44] [36] Matías Birrell, Rodrigo Astroza, Rodrigo Carre?o, José I, Restrepo, Gerardo Araya-Letelier, Bayesian parameter and joint probability distribution estimation for a hysteretic constitutive model of reinforcing steel, Structural Safety, Volume 90,2021,102062,ISSN 0167-4730,https://doi.org/10.1016/j.strusafe.2020.102062.
    [45] [37] 雷燕云,谢旭.修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型[J].浙江大学学报(工学版),2018,52(10):1926-1934.
    [46] https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname =CJFDLAST2018&filename=ZDZC201810012&v=8nUfbB%25mmd2B50ZB6JAggyeYTfm%25mmd2BTsXB04M6hnOe%25mmd2F8VAX0HO7KESKlG5OR8UNENCOr4iu.
    [47] LEI Y Y, XIE X, Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model [J],Journal Of Zhejiang University (Engineering Science),2018,52(10):p1926-1934, (in Chinese)
    [48] https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=ZDZC201810012&v=8nUfbB%25mmd2B50ZB6JAggyeYTfm%25mmd2BTsXB04M6hnOe%25mmd2F8VAX0HO7KESKlG5OR8UNENCOr4iu.
    [49] [38] DuraCrete, Statistical quantification of the variables in the limit state functions [R] 2019,
    [50] [39] Du Y G,Clark L A,Chan A H C, Residual capacity of corroded reinforcing bars[J], Magazine of Concrete Research,2005,57( 3):p135-147,https://doi.org/10.1680/macr.2005.7.3.135.
    [51] [40] Sung Y C,Su C K, Time-Dependent seismic fragility curves on optimal retrofitting of neutralized reinforced concrete bridges [J], Structure and, Infrastructure Engineering, 2011,7(10):p797-805,https://doi.org/10.080/ 15732470902989720.
    [52] [41] W, Yuan, A, Guo, H, Li, Experimental investigation on the cyclic behaviors of corroded coastal bridge piers with transfer of plastic hinge due to non-uniform corrosion, Soil Dyn, Earthq, Eng, 102 (2017) p112–123, https://doi.org/10.1016/j.soildyn.2017.08.019.
    [53] [42] H, Zhou, Y, Xu, Y, Peng, X, Liang, D, Li, F, Xing, Partially corroded reinforced concrete piers under axial compression and cyclic loading: An experimental study, Eng, Struct, 203 (2020) 109880, https://doi.org/10.016/j.engstruct.2019.109880.
    [54] [43] A, Guo, H, Li, X, Ba, X, Guan, H, Li, Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment, Eng, Struct, 105 (2015) p1–11, https://doi.org/10.1016/j.engstruct.2015.09.031.
    [55] [44] A,N, Kallias, M, Imran Rafiq, Finite element investigation of the structural response of corroded RC beams, Structure engineering 32 (9) (2010) p2984–2994,https://doi.org/10.1016/j.engstruct.2010.05.017.
    [56] [45] R,K, Biswas, M, Iwanami, N, Chijiwa, K, Uno, Effect of non-uniform rebar corrosion on structural performance of RC structures: A numerical and experimental investigation, Constr, Build, Mater, 230 (2020) 116908, https://doi.org/10.1016/j.conbuildmat.2019.116908.
    [57] [46] Georgios Tzortzinis, Brendan T, Knickle, Alexander Bardow, Sergio F, Bre?a, Simos Gerasimidis, Strength evaluation of deteriorated girder ends, II: Numerical study on corroded I-beams, Thin-Walled Structures, Volume 159,2021,107216,ISSN 0263-8231, https://doi.org/10.1016/j.tws.2020.07220.
    [58] [47] Kheira Ouzaa, Chahmi Oucif, Numerical model for prediction of corrosion of steel reinforcements in reinforced concrete structures, Underground Space, 4(1) ,2019, p72-77,https://doi.org/10.1016/j.undsp.2018.06.002.
    [59] [48] 江辉,谷琼,黄磊,李辰,孟宪锋,马馨怡.考虑氯离子侵蚀时变劣化效应的近海斜拉桥地震易损性分析[J].东南大学学报(自然科学版),2021,51(01):38-45.
    [60] https://kns.cnki.net/KXReader/Detail?TIMESTAMP= 637521943282617187&DBCODE=CJFD&TABLEName=CJFDLAST2021&FileName=DNDX202101006&RESULT=1&SIGN=JodU7%2fM5EqM70SeXJ8sqBDbixpc%3d.
    [61] JIANG H, GU Q, HUANG L, LI C , MENG X F, Ma X Y, Seismic vulnerability analysis of offshore cable-stayed bridge considering the time-varying deterioration effect of chloride ion erosion[J], Journal of Southeast University (Natural Science Edition),2021,51(01):p38-45, (in Chinese) https://kns.cnki.net/KXReader/Detail?TIMESTAMP=637521943282617187&DBCODE=CJFD&TABLEName=CJFDLAST2021&FileName=DNDX202101006&RESULT=1&SIGN=JodU7%2fM5EqM70SeXJ8sqBDbixpc%3d.
    [62] [49] Chakrabarti A, Sheikh A, Griffith M, Oehlers D, Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory[J], Int J Mech Sci 2012;59(1):p115–25, https://doi.org/ 10.1016/j.ijmecsci.2012.3.012.
    [63] [50] Chakrabarti A, Sheikh A, Griffith M, Oehlers D, Analysis of composite beams with partial shear interactions using a higher order beam theory[J], Eng Struct 2012;36:p283–291, https://doi.org/10.1016 /j.engstruct.2011.12.019.
    [64] [51] Chakrabarti A, Sheikh A, Griffith M, Oehlers D, Dynamic response of composite beams with partial shear interaction using a higher-order beam theory[J], J Struct Eng 2012;139(1):p47–56,https://doi.org/10.1016/ j.engstruct.2011.12.019.
    [65] [52] Uddin MA, Sheikh AH, Bennett T, Uy B, Large deformation analysis of two layered composite beams with partial shear interaction using a higher order beam theory[J], Int J Mech Sci 2017;122:p331–340, https://doi.org/10.016/j.ijmecsci.2017.01.030.
    [66] [53] Uddin MA, Sheikh AH, Brown D, Bennett T, Uy B, Geometrically nonlinear inelastic analysis of steel–concrete composite beams with partial interaction using a higher-order beam theory[J], Int J Non Linear Mech 2018;100:p34–47, https://doi.org/10.1016/j.ijnonlinmec.2018.01.002.
    [67] [54] Uddin MA, Sheikh AH, Brown D, Bennett T, Uy B, A higher order model for inelastic response of composite beams with interfacial slip using a dissipation based arc-length method[J], Eng Struct 2017;139:p120–134, https://doi.org/10.1016/j.engstruct.2017.02.025.
    [68] [55] Mukherjee S, Prathap G, Analysis of delayed convergence in the three-noded Timoshenko beam element using the function space approach[J], Sadhana 2002;27(5):p507–26, https://link.springer.com/article/10.1007/ BF02703292.
    [69] [56] Md,Alhaz Uddin, Majed Abdulrahman Alzara, Noor Mohammad, Ahmed Yosri, Convergence studies of finite element model for analysis of steel-concrete composite beam using a higher-order beam theory[J], Structures, Volume 27,2020, p2025-2033, https://doi.org/10.1016/j.istruc.2020.07.073.
    [70] [57] Li Zhu, Ray Kai-Leung Su, Ming-Jie Li, Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip[J], Engineering Structures, Volume 232,2021, https://doi.org/10.1016/j.engstruct.2020.111797.
    [71] [58] H,A,F,A, Santos, Buckling analysis of layered composite beams with interlayer slip: A force-based finite element formulation, Structures[J], Volume 25,2020,p542-553, https://doi,org/10,1016/j,istruc,2020,03,002.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:354
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-04
  • 最后修改日期:2021-08-04
  • 录用日期:2021-08-06
文章二维码