车-桥耦合振动2020年度研究进展
CSTR:
作者:
作者单位:

西南交通大学 土木工程学院

基金项目:

国家自然科学基金(51878565)


State-of-the-art Review of Vehicle-Bridge Coupling Vibration in 2020
Author:
Affiliation:

School of Civil Engineering,Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    车-桥耦合振动的主要研究内容包括轨道不平顺作用下的车-桥耦合振动及随机振动、风-车-桥耦合振动、地震-车-桥耦合振动、新型轨道车辆-轨道梁耦合振动等方面。当前,我国铁路桥梁建设面临更大跨度、高速度、高舒适度等新的挑战,在风荷载及列车荷载等外部激励作用下,车-桥间相互作用越发显著。如何准确预测实际复杂风环境下车-桥耦合系统动力响应及高速列车的行车走行性,并为桥梁设计、线路运营、维护及管理提供技术指导,成为2020年度车-桥耦合振动领域的研究热点和发展趋势。

    Abstract:

    The main research contents of vehicle-bridge coupled vibration include vehicle-bridge coupled vibration and random vibration under the effect of track irregularity, wind-vehicle-bridge coupled vibration, earthquake-vehicle-bridge coupled vibration, new rail vehicle-track beam coupling Vibration and other aspects. At present, the construction of railway bridges in China is facing new challenges such as larger spans, high speeds, and high comfort levels. Under external excitations such as wind loads and train loads, the vehicle-bridge interaction is becoming more and more significant. How to accurately predict the dynamic response of the vehicle-bridge coupling system and the running performance of high-speed trains in the actual complex wind environment, and provide technical guidance for bridge design, line operation, maintenance and management, and become a research hotspot and development trends in the field of vehicle-bridge coupled vibration in 2020.

    参考文献
    [1] Keerthi N Pujari, Srinivas S Miriyala, Prateek Mittal, Optimal long short term memory networks for long-term forecasting of real wind characteristics[J]. ScienceDirect. 2020.
    [2] 周桐,闫渤文,杨庆山,Pham Van Phuc,王京学.大气边界层大涡模拟入口湍流生成方法研究[J].工程力学,2020,37(07):68-76.
    [3] 包芸,习令楚.高雷诺数湍流风场大涡模拟的并行直接求解方法[J].力学学报,2020,52(03):656-662.
    [4] 刘芸,何承高,刘章军.各态历经随机风场的降维模拟[J].应用力学学报,2020,37(05):2079-2085+2325-2326.https://doi.org/10.11776/cjam.37.05.A025
    [5] Liu F, Fu L,Yang D, et al.Non-Gaussian Lagrangian Stochastic model for wind field simulation in the surface layer[J].Advances in Atmospheric Sciences,2020,37(01):90-104.
    [6] 李永乐,喻济昇,张明金,唐浩俊等.山区桥梁桥址区风特性及抗风关键技术[J]. 中国科学:技术科学,2020,50.
    [7] 刘宗杰,祝志文,陈魏,陈政清等. 跨长江特大桥拉索涡激振动与风特性观测[J]. 铁道科学与工程学报,2020.7.
    [8] 李加武,徐润泽,党嘉敏,等.喇叭口河谷地形基本风特性实测[J].长安大学学报:自然科学版,2020,40(6):47-56.
    [9] Zhang J, Zhang M, Li Y, et al. Comparison of wind characteristics at different heights of deep-cut canyon based on field measurement[J]. Advances in Structural Engineering, 2019.1-15. DOI:10.1177/1369433219868074
    [10] Jing H, Liao H, Ma C, et al. Field measurement study of wind characteristics at different measuring positions in a mountainous valley[J]. Experimental Thermal Fluid Science, 2019.11.
    [11] 汪磊,张志田,谭卜豪,马健,袁少洋等. 实测与规范风谱下某悬索桥抖振响应定性比较[J]. 中外公路,2020.4.
    [12] Zhou Y, Sun L and Xie M. Wind characteristics at a long-span sea-crossing bridge site based on monitoring data. Journal of Low Frequency Noise[J], Vibration and Active Control 0(0) 1–17.
    [13] 王峰,何晗欣,白桦等.峡谷地区桥位处风参数特性[J].南京工业大学学报( 自然科学版) ,2020,42( 3) : 351-357. DOI:10.3969/j.issn.1671-7627.2020.03.011
    [14] Song J, Li J, Richard G.J. Flay. Field measurements and wind tunnel investigation of wind characteristics at a bridge site in a Y-shaped valley[J]. Journal of Wind Engineering Industrial Aerodynamics 202 (2020) 104199.
    [15] Zhang M, Zhang J, Li Y, et al. Wind characteristics in the high altitude difference at bridge site by wind tunnel tests[J]. Wind and Structures, Vol. 30, No. 6 (2020) 547-558.
    [16] 沈炼,华旭刚,韩艳,蔡春声,韦成龙等. 高精度入口边界的峡谷桥址风场数值模拟[J]. 中国公路学报,2020.7
    [17] Chen X, Liu Z, Wang X, et al. Experimental and numerical investigation of wind characteristics over mountainous valley bridge site considering iImproved boundary transition sections [J]. Applied science.
    [18] Xu Z, Wang H, Zhang h, et al. Non-Stationary turbulent wind field simulation of long-span bridges using the updated Non-Negative matrix factorization-based spectral representation method [J]. Applied science, 2019.12.
    [19] Su Y, Li M,Yang Y, et al. Experimental investigation of turbulent fluctuation characteristics observed at a moving point under crossflows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020,197(C).
    [20] Zou Q, Li X, Li X, et al. Simulation of fluctuating wind of high-speed vehicle-bridge united system [J], Transport.2021.
    [21] 潘韬,肖海珠,赵林等. 大跨度桥梁超宽分体三箱梁抗风性能及控制措施研究[J]. 桥梁建设, 2020, 50(z2): 29-35.
    [22] 童俊豪,陈鑫. 某宽幅箱梁悬索桥气动特性节段模型风洞试验[J]. 广东公路交通, 2020, 46(04): 47-52.
    [23] 李先进,卿仁杰,朱强等. 三主桁式大跨度钢拱桥气动力特性与风振性能研究[J]. 铁道科学与工程学报, 2020, 17(03): 628-636.
    [24] Ma C, Pei Cheng, Liao H, et al. Field measurement and wind tunnel study of aerodynamic characteristics of twin-box girder [J]. Journal of Wind Engineering Industrial Aerodynamics 202 (2020) 104209.
    [25] 邹思敏,何旭辉,王汉封等. 横风作用下高速列车-桥梁系统气动特性风洞试验[J]. 2020, 20(01):132-139. DOI:10.19818/j.cnki.1671-1637.2020.01.010
    [26] Guo Z, Liu T, Chen Z, et al. Aerodynamic influences of bogie’s geometric complexity on high-speed trains under crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 196104053.
    [27] Li T, Dai Z, Zhang W. Effect of RANS Model on the aerodynamic characteristics of a train in crosswinds using DDES[J]. Computer Modeling in Engineering Sciences, 2020, 122(2): 555-570.
    [28] Wang M, Li X, Xiao J, et al. The Effect of Infrastructures on the Aerodynamic Performance of a Moving High-Speed Train [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 8:1-14.
    [29] He X, Zuo T, Zou Y, et al. Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds[J]. Journal of Central South University, 2020, 27(8): 2465-2478.
    [30] 张鹏,杜礼明. 高速列车气动特性对桥梁防护墙的响应分析[J]. 大连交通大学学报, 2020, 41(06): 35-40.
    [31] 周旭,李的平,何旭辉,等. 公铁同层桥梁列车轨道优化布置风洞试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(01): 126-129.
    [32] Li H, He X, Wang H, et al. Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds[J]. Journal of Fluids and Structures, 2019, 91102717.
    [33] 何佳俊,向活跃,龙俊廷等. 大风攻角下桥隧过渡段CRH3型列车气动特性和安全性分析[J].西南交通大学学报(网络版).
    [34] 杨建新, 吴蕊恒, 倪志军等. 圆环形桥塔区域行车风环境数值模拟[J]. 公路, 2020,65(07): 170-174.
    [35] 袁涛, 祝志文, 陈魏等. 增设观光电梯的超大跨桥梁塔柱风荷载与气动干扰特性[J]. 工业建筑, 2020,50(04): 138-144.
    [36] Li X, Tian Y, Qiu X, et al. Wind tunnel measurement of aerodynamic characteristics of trains passing each other on a simply supported box girder bridge[J]. Railway Engineering Science, 2021(prepublish).
    [37] Liu D, Tomasini G M, Cheli F, et al. Effect of aerodynamic force change caused by car-body rolling on train overturning safety under strong wind conditions[J]. Vehicle system dynamics. 2020: 1-21.
    [38] Liu D, Marita Tomasini G, Rocchi D, et al. Correlation of car-body vibration and train overturning under strong wind conditions[J]. Mechanical Systems and Signal Processing. 2020, 142: 106743.
    [39] Liu D, Wang T, Liang X, et al. High-speed train overturning safety under varying wind speed conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2020, 198: 104111.
    [40] Wang M, Li X, Chen X. A simplified analysis framework for assessing overturning risk of high-speed trains over bridges under crosswind[J]. Vehicle System Dynamics. 2020: 1-11.
    [41] Montenegro P A, Heleno R, Carvalho H, et al. A comparative study on the running safety of trains subjected to crosswinds simulated with different wind models[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2020, 207: 104398.
    [42] Montenegro P A, Barbosa D, Carvalho H, et al. Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields[J]. Engineering Structures. 2020, 211: 110430.
    [43] 韩艳,刘叶,胡朋. 非定常气动荷载对桥上列车行驶安全舒适性影响分析[J]. 铁道科学与工程学报. 2020, 17(1): 118-128.
    [44] Han Y, Liu Y, Hu P, et al. Effect of unsteady aerodynamic loads on driving safety and comfort of trains running on bridges[J]. Advances in Structural Engineering. 2020, 23(13): 2898-2910.
    [45] 郭文华,洪新民,陈春霞. 侧风下高铁列车交会运行时车—桥耦合振动[J]. 中国铁道科学. 2020, 41(04): 48-56.
    [46] 崔圣爱,刘品,晏先娇,等. 横风环境下跨海大桥列车-桥梁系统耦合振动仿真研究[J]. 铁道学报. 2020, 42(6): 93-101.
    [47] 郑晓龙,徐建华,鲍玉龙等. 悬挂式单轨简支梁风车桥耦合动力分析[J]. 铁道工程学报. 2020, 37(02): 53-58.
    [48] 李永乐,龙俊廷,向活跃等. 基于风-车-桥的城市轨道交通桥横向挠跨比建议值研究[J]. 振动与冲击. 2020, 39(24): 211-217. DOI: 10.13465/j.cnki.jvs.2020.24.029
    [49] Zhang J, Zhang M, Li Y, et al. Local wind characteristics on bridge deck of twin-box girder considering wind barriers by large-scale wind tunnel tests[J]. Natural Hazards. 2020, 103(1): 751-766.
    [50] 霍卿,许建林,梅元贵. 高速铁路桥梁挡风屏遮蔽效应分析[J]. 空气动力学学报. 2020, 38(01): 73-81. DOI:10.7638/kqdlxxb-2017.0181
    [51] Gu H, Liu T, Jiang Z, et al. Research on the wind-sheltering performance of different forms of corrugated wind barriers on railway bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2020, 201: 104166.
    [52] 李小珍,邱晓为,郑净等. 一种确定典型铁路基础结构风剖面等效风速比的方法[P]. CN202011032851.6. 2021.01.1.
    [53] 徐昕宇,李永乐,陈星宇等. 风屏障的突风效应对桥上列车走行性的影响[J]. 西南交通大学学报. 2020: 1-7.
    [54] Yang W, Deng E, Zhu Z, et al. Deterioration of dynamic response during high-speed train travelling in tunnel–bridge–tunnel scenario under crosswinds[J]. Tunnelling and Underground Space Technology. 2020, 106: 103627.
    [55] Yang W, Deng E, Zhu Z, et al. Sudden Variation Effect of Aerodynamic Loads and Safety Analysis of Running Trains When Entering Tunnel Under Crosswind[J]. Applied Sciences. 2020, 10(4): 1445.
    [56] Deng E, Yang W, He X, et al. Transient aerodynamic performance of high-speed trains when passing through an infrastructure consisting of tunnel–bridge–tunnel under crosswind[J]. Tunnelling and Underground Space Technology. 2020, 102: 103440.
    [57] 施成华,王昂,邓锷等. 桥隧段风屏障对高速列车气动荷载及行车安全的影响[J]. 华南理工大学学报(自然科学版). 2020, 48(6): 58-68, 76. DOI: 10.12141/j.issn.1000-565X.190807
    [58] 喻宝金,乔张旺,付丽. 风屏障对扁平箱梁气动稳定性的影响[J]. 中外公路. 2020, 40(2): 99-102. DOI: 10.14048/j.issn.1671-2579.2020.02.021
    [59] 潘韬,肖海珠,赵林等. 大跨度桥梁超宽分体三箱梁抗风性能及控制措施研究[J]. 桥梁建设. 2020, 50(z2): 29-35
    [60] Yongxin Y, Yaojun G, Rui Z, et al. Aerodynamic countermeasure schemes of super long-span suspension bridges with various aspect ratios[J]. International Journal of Structural Stability and Dynamics. 2020, 20(05).
    [61] Dai Y, Dai X, Bai Y, et al. Aerodynamic performance of an adaptive GFRP wind barrier structure for railway bridges[J]. Materials. 2020, 13(18): 4214.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:441
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-05
  • 最后修改日期:2021-08-05
  • 录用日期:2021-08-06
文章二维码