2020年预制装配式混凝土桥梁结构研究综述
CSTR:
作者:
作者单位:

西南交通大学桥梁工程系

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


State of the art on prefabricated concrete bridge structures in 2020
Author:
Affiliation:

Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    预制装配式桥梁凭借施工质量好、对环境的影响小、现场作业时间短、施工安全水平高等优势,已成为中国桥梁建设的重要发展方向。预制装配式混凝土桥梁既适合于交通复杂的城市道路桥梁,也适合于施工环境艰苦的铁路桥梁建设。本文通过文献调研的方式,梳理2020年度国内外预制装配式混凝土桥梁的研究进展。根据桥梁结构类型,从上部结构与下部结构两个方面论述了该领域内的新技术、新构造以及典型工程应用。经过本文粗略总结,在上部结构中,节点的连接构造、抗裂性能与耐久性得到了学者的广泛关注;z哎下部结构中,随着预制装配式体系在高烈度地震区桥梁的中应用,预制装配式桥墩的构造与抗震性能是目前研究的一个热点。下部结构的耐久性与抗裂性能仍有待提升。

    Abstract:

    Prefabricated bridges have become an important development direction of bridge construction due to the advantages of good construction quality, low impact on the environment, short on-site operation time, and high level of construction safety. Prefabricated concrete bridges are not only suitable for urban road bridges with complex traffic, but also for railway bridges in difficult construction environments. This paper sorts out the research progress of prefabricated concrete bridges at home and abroad in 2020 through the method of literature research. According to the type of bridge structure, new technologies, new structures and typical engineering applications in this field are discussed from two aspects: the upper structure and the lower structure. After a rough summary in this article, in the superstructure, the connection structure, crack resistance and durability of the nodes have received extensive attention from scholars; in the substructure, as the prefabricated system is applied to the bridge in the high-intensity earthquake area, The structure and seismic performance of prefabricated bridge piers are currently a hot research topic. The durability and crack resistance of the substructure still needs to be improved.

    参考文献
    [1] Peng B, Peng R, Su H, et al. Structural Rationality Research on Integrated Prefabricated I-Shaped Steel-Concrete Composite Girder Bridges[C] Conference Series: Earth and Environmental Science. 2020, 455(1): 012021.
    [2] 单波, 王艺萤, 肖岩, 张长青. 胶合竹-混凝土组合梁RPC-钢复合连接件试验研究[J]. 湖南大学学报(自然科学版), 2020, 47(1):66-75.
    [3] Di J, Han B, Qin F. Investigation of U-bar joints between precast bridge decks loaded in combined bending and shear[C] Structures. Elsevier, 2020, 27: 37-45.
    [4] Yang T, Liu S, Qin B, et al. Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams[J]. Journal of Constructional Steel Research, 2020, 173: 106260.
    [5] YAO Z L, YAN B F. Experimental Model Test and Flexural Performance of Wet Joints in Prefabricated UHPC Bridges [J]. Highway Engineering, 2020, 45(3): 105-110, 138. (in Chinese)
    [6] Guo Q, Chen Q W, Xing Y, et al. Experimental Study of Friction Resistance between Steel and Concrete in Prefabricated Composite Beam with High-Strength Frictional Bolt [J]. Advances in Materials Science and
    [7] 赵辛玮, 肖汝诚, 孙斌, 等. 常温养护型超高性能混凝土组合桥面板收缩性能研究[J]. 中外公路, 2020, 40(3): 100-108.
    [8] 贺欣怡, 苏庆田, 姜旭, 等. 环氧胶粘结刚性铺装的正交异性桥面板力学性能[J]. 哈尔滨工业大学学报, 2020, 52(9): 25-31.
    [9] 蔡文平. 基于钢管连接件的钢-UHPC组合桥面板抗剪性能研究[J]. 公路工程, 2020, 45(2): 14-20.
    [10] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(02): 201-210.
    [11] 邵林海,李志峰,贺志启,马增,刘钊. 不同剪力连接度下装配式钢-混组合箱梁受力性能试验研究[J]. 交通科技, 2020, 2:1-6.
    [12] Al-Rousan R. Behavior of prefabricated full-depth precast concrete bridge deck panel system: optimum prestress level[J]. Procedia Manufacturing, 2020, 44: 607-614.
    [13] Honarvar E, Sritharan S, Rouse J M, et al. Probabilistic Approach to Integrating Thermal Effects in Camber and Stress Analyses of Concrete Beams[J]. Journal of Bridge Engineering, 2020, 25(4): 04020010.
    [14] 冀伟,罗奎,马万良,唐寿洋,席培培. 装配式波形腹板钢箱-混凝土组合梁桥动力特性分析与试验研究[J]. 振动与冲击, 2020, 39(20):1-7.
    [15] Yuen T Y P, Halder R, Chen W W, et al. DFEM of a post-tensioned precast concrete segmental bridge with unbonded external tendons subjected to prestress changes[C]//Structures. Elsevier, 2020, 28: 1322-1337.
    [16] 项贻强, 何百达. 考虑疲劳损伤的栓钉式组合梁剩余承载力计算方法[J]. 湖南大学学报(自然科学版). 2020, 47(9): 33-39.
    [17] 汪炳, 黄侨, 刘小玲. 考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证[J]. 工程力学. 2020, 37(6): 140-147.
    [18] Mager M, Gei?ler K. Zum Riss‐und Verformungsverhalten von Stahlverbundtr?gern mit Teilfertigteilen[J]. Stahlbau, 2020, 89(2).
    [19] 刘新华, 周聪, 张建仁, 李立峰, 石雄伟. 钢-UHPC组合梁负弯矩区受力性能试验[J].中国公路学报, 2020, 33(05): 110-121.
    [20] Zhanghua X, Jiping G, Youqin L, et al. Shake table study on precast segmental concrete double-column piers[J]. Earthquake Engineering and Engineering Vibration. 2020, 19(3): 705-723.
    [21] 韩艳, 董嘉雯, 王龙龙, 等. 承插式装配桥墩抗震性能拟静力试验与数值模拟[J]. 工程抗震与加固改造. 2020, 42(5): 63-70.
    [22] 徐文靖, 马骉, 黄虹, 等. 套筒连接的预制拼装桥墩抗震性能研究[J]. 工程力学. 2020, 37(10): 93-104.
    [23] Cheng Y, Linyou Z,, Ziyang Z, et al, Effective stress-strain relationship for grouted sleeve connection: Modeling and experimental verification[J]. Engineering Structures, 2020, 210: 110300.
    [24] 逯艳东, 李士友, 胡兴安, 李晓鹏, 许坤. 灌浆套筒连接预制拼装桥墩抗剪强度设计方法[J]. 市政技术, 2020, 38(05): 103-108+113.
    [25] Wang Z, Wang J, Zhao G, et al. Numerical study on seismic behavior of precast bridge columns with large-diameter bars and UHPC grout considering the bar-slip effect[J]. Bulletin of Earthquake Engineering, 2020, 18: 4963-4984.
    [26] Liu Y, Li X, Zheng X, et al. Experimental study on seismic response of precast bridge piers with double-grouted sleeve connections[J]. Engineering Structures, 2020, 221: 111023.
    [27] Jia J, Zhang K, Saiidi M S, et al. Seismic evaluation of precast bridge columns with built-in elastomeric pads[J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105868.
    [28] Shafieifar M, Farzad M, Azizinamini A. Investigation of a detail for connecting precast columns to precast cap beams using ultrahigh-performance concrete[J]. Journal of Bridge Engineering, 2020, 25(3): 04020001.
    [29] 李嘉维, 夏樟华, 余舟扬. 灌浆套筒连接装配式混凝土双柱墩的双向拟静力试验研究[J]. 地震工程与工程振动, 2020, 40(03): 193-203.
    [30] 蔡忠奎, 王震宇, 苑溦. 高强钢筋增强节段拼装桥墩抗震性能分析[J]. 南京工业大学学报(自然科学版), 2020, 42(3): 312-317.
    [31] 王文炜, 周畅, 薛彦杰, 宋元印. 外置耗能钢板预制拼装桥墩抗震性能研究[J]. 湖南大学学报(自然科学版), 2020,47(09): 57-68.
    [32] 赵建锋, 孟庆一. 基于干接缝单元的预制拼装桥墩抗震性能数值模拟[J]. 地震工程与工程振动, 2020, 40(2): 111-122.
    [33] 李宁, 张双城, 李忠献, 等. 预制拼装钢管混凝土自复位桥墩变形分析模型及验证[J]. 工程力学, 2020, 37(4): 135-143.
    [34] Zhang D, Li N, Li Z X, et al. Seismic performance of bridge with unbonded posttensioned self-centering segmented concrete-filled steel-tube columns: An underwater shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106350.
    [35] Jia J, Zhang K, Wu S, et al. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions[J]. Engineering Structures, 2020, 221: 111037.
    [36] 白天宁. 加固后预制节段RC空心桥墩抗震性能试验研究[D]. 北京: 北京工业大学, 2020.
    [37] 张凯迪. 加固后预制节段RC空心桥墩静力和动力性能研究[D]. 北京: 北京工业大学, 2020.
    [38] 杜青, 张森博, 卿龙邦. 预制节段拼装桥墩受力性能分析与模拟[J].重庆交通大学学报(自然科学版), 2020, 39(07): 73-80.
    [39] 马煜, 张于晔. CFRP加固对预制节段拼装桥墩抗震性能的影响[J].地震工程学报, 2020, 42(04): 847-855.
    [40] Zhang Y, Tabandeh A, Ma Y, et al. Seismic performance of precast segmental bridge columns repaired with CFRP wraps[J]. Composite Structures, 2020, 243: 112218.
    [41] Li S, Zhao T, Alam M S, et al. Probabilistic seismic vulnerability and loss assessment of a seismic resistance bridge system with post-tensioning precast segmental ultra-high performance concrete bridge columns[J]. Engineering Structures, 2020, 225: 111321.
    [42] Ahmadi E; Kashani M M. Numerical investigation of nonlinear static and dynamic behaviour of self-centring rocking segmental bridge piersn [J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105876.
    [43] 袁宏博. 一种新型承插式自复位桥墩的抗震性能研究[D]. 河北工程大学, 2020.
    [44] Guanyu Zheng, Zhiping Kuang, Jianzhuang Xiao,Zuanfeng Pan. Mechanical performance for defective and repaired grouted sleeve connections under uniaxial and cyclic loadings[J]. Construction and Building Materials, 2020,233.
    [45] Fan Jia-Jun, Feng De-Cheng, Wu Gang, Hou Shitong, Lu Yong. Experimental study of prefabricated RC column-foundation assemblies with two different connection methods and using large-diameter reinforcing bars[J]. Engineering Structures, 2020, 205: 110075.
    [46] Moradian M, Chini M, Shekarchi M. Durability Performance of a Structure Made with High-Performance Concrete and Prefabricated Elements in a Marine Environment[J]. Journal of Performance of Constructed Facilities, 2015, 29(6): 1-12.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:927
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-18
  • 最后修改日期:2021-08-18
  • 录用日期:2021-08-19
文章二维码