高耸烟囱风致响应精细化计算方法研究
CSTR:
作者单位:

1.四川大学;2.山东电力建设第三工程公司

基金项目:

国家自然科学基金(51878426)


Study on fine calculation method of wind-induced response of high-rise chimneys
Affiliation:

1.Sichuan University;2.SEPCOIII Electric Power Construction Co., Ltd., Qingdao

Fund Project:

National Natural Science Foundation of China (No. 51878426);

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    高耸烟囱的风致响应可分为顺风向响应和横风向响应,其中顺风向响应以大气脉动风引起的抖振响应为主,横风向响应以Karman旋涡脱落引起的涡激振动为主。准确地预测和评估高耸烟囱的顺风向和横风向风致响应对其抗风设计和结构安全性至关重要。在Tamura提出的二维平面尾流振子模型的基础上进一步推导,将该模型成功运用在三维结构上,提出可用于实际工程结构的有限元迭代计算方法,为高耸烟囱这类结构横风向涡振响应的计算提供了一种新的视野。此外,基于结构的固有模态坐标,建立了适用于高耸烟囱耦合抖振响应分析的有限元CQC频域计算方法,并将频域计算结果和时域计算结果对比。结果表明:有限元迭代计算方法可以有效地计算三维烟囱的涡振响应,烟囱抖振响应频域计算和时域计算结果也吻合良好。

    Abstract:

    The wind-induced response of a tall chimney can be divided into along-wind response and across-wind response, among which the along-wind response is mainly buffeting response caused by atmospheric pulsation and the across-wind response is mainly vortex-induced vibration caused by Karman vortex shedding. The two-dimensional plane wake oscillator model proposed by Tamura is further derived and successfully applied to three-dimensional structures. A finite element iterative calculation method for practical engineering structures is proposed, which provides a new field of vision for the calculation of the across-wind vortex-induced vibration response of structures such as towering chimneys. In addition, based on t the intrinsic mode coordinates of the structure, a finite element CQC method in frequency domain is developed for coupling buffeting response analysis of tall chimneys. The results in frequency domain are compared with those in time domain. The results show that the finite element iterative method can effectively calculate the vortex-vibration response of three-dimensional chimneys, and the chattering response of chimney structure calculated in frequency domain is in good agreement with that of the time-domain method.

    参考文献
    [1] 陈鑫. 高耸钢烟囱风振控制理论与试验研究[D]. 南京:东南大学,2012.
    [2] 刘仰昭. 均匀流中方形柱体横风向气动特性及模型化研究[D]. 成都:西南交通大学,2018.
    [3] Chen C , Mannini C , Bartoli G , et al. Experimental study and mathematical modeling on the unsteady galloping of a bridge deck with open cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 203: 104170.
    [4] 陈政清. 桥梁风工程[M].北京:人民交通出版社,2005:64-133.
    [5] 张勇,曹素功,马如进,等. 大跨度悬索桥涡激振动动态监控预测[J]. 振动与冲击, 2020, 39(08): 143-150.ZHANG Yong, CAO S-0ugong, MA Rujin, et, al. Dynamics monitoring and prediction for vortex induced vibration of a sea crossing bridge[J]. Journal of Vibration and Shock, 2020, 39(08): 143-150.
    [6] 廖海黎,李明水,马存明,等. 桥梁风工程2019年度研究进展[J]. 土木与环境工程学报(中英文),2020, 42(5): 56-66.LIAO Haili, LI Mingshui, MA Cunming, et al. State-of-the-art review of bridge wind engineering in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 56-66.
    [7] Mannini C . Incorporation of turbulence in a nonlinear wake-oscillator model for the prediction of unsteady galloping response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 200: 104141.
    [8] Liu Y Z , Ma C M , Li Q S , et al. A new modeling approach for transversely oscillating square-section cylinders[J]. Journal of Fluids and Structures, 2018, 81: 492-513.
    [9] 张亮亮,吴蕊恒,倪志军,等. 全风向角下二维切角方形桥塔气动措施数值模拟[J]. 土木与环境工程学报(中英文), 2019, 41(02): 116-121.ZHANG Liangliang, WU Ruiheng, NI Zhijun, et al. Numerical simulation on aerodynamic measures of 2D-corner-cutoff square cylinder under all yaw wind angles[J]. Journal of Civil and Environmental Engineering, 2019, 41(02): 116-121.
    [10] VICKERY B J, BASU R I. Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1983, 12(1): 49-73.
    [11] VICKERY B J, BASU R I. The response of reinforced concrete chimneys to vortex shedding[J]. Engineering Structure. 1984, 6(4): 324-333.
    [12] HARTLEN R T, CURRIE I G. Lift-oscillator model of vortex-induced vibration[J]. Journal of the Engineering Mechanics Division, 1970, 96(5): 577-591.
    [13] TAMURA Y, AMANO A. Mathematical model for vortex-induced oscillations of contimuous systems with circular cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1983, 14: 431-442.
    [14] TAMURA Y. Mathematical models for understanding phenomena: Vortex-induced vibrations[J]. Japan Architectural Review. 2020, 00: 1-25.
    [15] 李永乐,廖海黎,强士中. 桥梁抖振时域和频域分析的一致性研究[J]. 工程力学, 2005, 22(2): 179-183.LI Yongle, LIAO Haili, QIANG Shizhong. Bridge buffeting analysis in time and frequency domains[J]. Engineering Mechanics, 2005, 22(2): 179-183.
    [16] Feng C C. The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver: University of British Columbia, 1968.
    [17] STAUBLI T. Calculation of the Vibration of an Elastically Mounted Cylinder Using Experimental Data from Forced Oscillation[J]. Journal of Fluids Engineering, 1983, 105:225-229.
    [18] ASCE (American Society of Civil Engineers).ASCE/SEI 7-16 Minimum design loads and associated criteria for buildings and other structures [S]. Reston, VA: American Society of Civil Engineers, 2016.
    [19] ABOSHOSHA H., ELSHAER A, BITSUAMLAK G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 198-216.
    [20] Gartshore I S, Khanna J, Laccinole S. The effectiveness of vortex spoilers on a circular cylinder in smooth and turbulent flow[J]. Wind Engineering, 1980: 1371-1379.
    [21] Ruscheweyh H. Straked in-line steel stacks with low mass-damping parameter[J]. Journal of Wind Engineering
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:314
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-26
  • 最后修改日期:2022-01-16
  • 录用日期:2022-01-20
文章二维码