不同入流条件及偏航角下的单风机尾流特性
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院;2.中国船舶集团海装风电股份有限公司;3.香港大学 土木工程系;4.河海大学 力学与材料学院

中图分类号:

TK89??????????


Wake characteristics of single wind turbine under different inflow conditions and yaw angles
Author:
Affiliation:

1.School of Civil Engineering, chongqing university;2.chongqing university;3.CSSC Haizhuang Wind Power Co;4.Department of Civil Engineering, The University of Hong Kong;5.The College of Mechanics and Materials Hohai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    风电是实现我国“3060”双碳目标的关键路径之一。随着大型风电基地建设,上游风机在运行时会使得下游风场风速下降,湍流度增大,造成下游风机发电功率降低,加剧风机的疲劳破坏并缩短其服役周期。因此,亟需开展风机尾流研究,明确其特性及演化规律。作者主要研究目的是揭示不同入流及偏航角下的单风机尾流特性。首先,基于单风机尾流风洞试验,验证基于大涡模拟(Large Eddy Simulation, LES)结合致动线模型(Actuator Line Model, ALM)的数值模拟方法的准确性。然后,基于LES-ALM模拟方法研究入流风场(包括风速及湍流度)及偏航角对风机尾流特性的影响,阐明正负偏航角下单风机尾流的对称性。结果表明:随着背景湍流度的增大,会使得风机尾流恢复速度加快。当入流条件相同时,风机设置正负对称偏航角,其尾流风速也表现出一定的对称性。风机偏航角越大,风机尾流膨胀宽度会逐渐减小,并减轻尾流风速的亏损程度。

    Abstract:

    Wind power is one of the key paths to achieve China's "30·60" carbonized neutrality. With the rapid construction of the large-scale wind farms, the upstream wind turbine will deteriorate the wind velocity in the wind turbine wake region and increase the wake turbulence, thereby reducing the power efficiency of downstream wind turbine and aggravating the fatigue damage of the wind turbine to shorten its service life time. Therefore, it is urgent to carry out the study of wind turbine wake characteristics. The main purpose of this study is to reveal the wake characteristics of a standalone wind turbine under different upstream flow conditions and with various yaw angles. Firstly, the accuracy of the Large Eddy Simulation (LES) combined with Actuator Line Model (ALM) was verified by the corresponding wind tunnel test. And then, based on the LES-ALM simulation method, the effects of inlet (including velocity and turbulence intensity) and yaw angle on the turbine wake characteristics were studied, and the symmetry of horizontal profiles of the wind turbine wake at the hub height was clarified with positive and negative yaw angles. The results show that with the increase of background turbulence intensity, the recovery of the wind turbine wake will be accelerated. Moreover, under the same upstream flow conditions and symmetrical yaw angle, the certain symmetry of wind turbine wake velocity was also identified. When the yaw angle of the wind turbine increases, both the expansion rate of the turbine wake width and the deficit degree of the wake wind velocity would decrease.

    参考文献
    [1] ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018 226: 1187-1207.
    [2] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore[J]. Wind Energy, 2009 12: 431-444.
    [3] IVANELL S, SORENSEN J N, MIKKELSEN R, et al. Analysis of Numerically Generated Wake Structures[J]. Wind Energy, 2009 12: 63-80.
    [4] TROLDBORG N, SORENSEN J N, MIKKELSEN R. Actuator line simulation of wake of wind turbine operating in turbulent inflow[J]. Science of Making Torque from Wind, 2007 75.
    [5] WU Y T, PORTE-AGEL F. [5, 4, 3][J]. Boundary-Layer Meteorology, 2011 138: 345-366.
    [6] XIE S B, ARCHER C. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind Energy, 2015 18: 1815-1838.
    [7] VERMEER L J, SORENSEN J N, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in Aerospace Sciences, 2003 39: 467-510.
    [8] CHURCHFIELD M J, LEE S, MICHALAKES J, et al. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J]. Journal of Turbulence, 2012 13: 1-32.
    [9] NA J S, KOO E, KO S C, et al. Stochastic characteristics for the vortical structure of a 5-MW wind turbine wake[J]. Renewable Energy, 2019 133: 1220-1230.
    [10] ARCHER C L, VASEL-BE-HAGH A. Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation[J]. Sustainable Energy Technologies and Assessments, 2019 33: 34-43.
    [11] BROMM M, ROTT A, BECK H, et al. Field investigation on the influence of yaw misalignment on the propagation of wind turbine wakes[J]. Wind Energy, 2018 21: 1011-1028.
    [12] AHMAD T, BASIT A, AHSAN M, et al. Implementation and Analyses of Yaw Based Coordinated Control of Wind Farms[J]. Energies, 2019 12.
    [13] ADARAMOLA M S, KROGSTAD P A. Experimental investigation of wake effects on wind turbine performance[J]. Renewable Energy, 2011 36: 2078-2086.
    [14] DOU B Z, QU T M, LEI L P, et al. Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model[J]. Energy, 2020 209.
    [15] GERMANO M, et al. A dynamic subgrid‐scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991 3.7: 1760-1765.
    [16] SORENSEN J N, SHEN W Z. Numerical modeling of wind turbine wakes[J]. Journal of Fluids Engineering-Transactions of the Asme, 2002 124: 393-399.
    [17] VRANA T K, FLYNN D, GOMEZ-LAZARO E, et al. Wind power within European grid codes: Evolution, status and outlook[J]. Wiley Interdisciplinary Reviews-Energy and Environment, 2018 7.
    [18] KROGSTAD P A, ERIKSEN P E. "Blind test" calculations of the performance and wake development for a model wind turbine[J]. Renewable Energy, 2013 50: 325-333.
    [19] ABOSHOSHA H, ELSHAER A, BITSUAMLAK G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015 142: 198-216
    [20] CHAMORRO L P, ARNDT R E A, SOTIROPOULOS F. Reynolds number dependence of turbulence statistics in the wake of wind turbines[J]. Wind Energy, 2012 15: 733-742.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:359
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-30
  • 最后修改日期:2022-01-12
  • 录用日期:2022-02-23
文章二维码