考虑尺寸效应影响的钢筋混凝土构件纯扭承载力计算方法
CSTR:
作者:
作者单位:

北京工业大学 城市减灾与防灾防护教育部重点实验室

中图分类号:

TU312

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Calculation for pure torsional capacity of reinforced concrete members considering size effect
Author:
Affiliation:

The Key Laboratory of Urban Security and Disaster Engineering,Beijing University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在实际受力状态中,钢筋混凝土柱/梁除了受到轴力和弯矩的作用,还可能存在扭矩的作用。在扭矩存在的复合受力状态下,构件的破坏更为严重且较难预测。扭转破坏常表现出脆性破坏特征,从而具有明显的尺寸效应现象。近年来钢筋混凝土构件的抗扭设计问题受到了广泛关注。现行的设计规范是基于小尺寸试件的试验数据外推而来,并未考虑尺寸效应的影响,对大尺寸试件承载力预测值的安全度有待商榷。本文总结了钢筋混凝土柱名义抗扭强度尺寸效应规律,建立了能定量反映配箍率影响的名义抗扭强度尺寸效应律公式。进而,通过引入尺寸效应系数αh,建立了考虑结构尺寸影响的钢筋混凝土构件纯扭承载力建议预测公式,从而保证了大尺寸试件承载力预测值的安全度。通过现有试验数据的对比,证明了修正公式可有效提高大尺寸试件承载力预测值的安全储备。

    Abstract:

    In the actual stress state, reinforced concrete (RC) columns/beams are subjected not only to axial force and bending moment but also, possibly to torque moment. Under combined loading including torque moment, the failure of structures is more serious and difficult to predict. The torsional failure has a significant size effect because it often exhibits brittle failure characteristics. The torsional structure design of RC members has been widely concerned in recent years. However, the existing design codes are extrapolated based on the test data of small size specimens without considering the impact of size effect, so the safety degree of the predicted values of large size specimens remains to be further discussed. In this paper, the size effect law of nominal torsional strength of RC columns was summarized, and the size effect law formula of nominal torsional strength which can quantitatively reflect the effect of stirrup ratio was established. Furthermore, by introducing the size effect coefficient αh, a suggestion predicted formula for pure torsional capacity of RC members considering the influence of size effect was proposed to ensure the safety of the predicted values of large size specimens. By comparing the existing test data, it was proved that the modified formula can effectively improve the safety reserve of the predicted bearing capacity of large size specimens.

    参考文献
    [1] 孙治国, 王东升, 郭迅, 等. 汶川大地震绵竹市回澜立交桥震害调查[J]. 地震工程与工程振动, 2009, 29(04): 132-138.
    [2] Ba?ant ZP, ?ener S, Prat PC. Size effect tests of torsional failure of plain and reinforced concrete beams[J]. Materials and Structures, 1988, 21(6): 425-430.
    [3] Kirane K, Singh KD, Ba?ant ZP. Size effect in torsional strength of plain and reinforced concrete[J]. ACI Structural Journal, 2016, 113(6): 1253-1262.
    [4] Jin L, Zhu H, Du X. Meso-scale modelling of size effect on pure torsional-shear of RC columns[J]. Archives of Civil and Mechanical Engineering, 2022, 22(1): 1-19.
    [5] De Domenico D. Torsional strength of RC members using a plasticity-based variable-angle space truss model accounting for non-uniform longitudinal reinforcement[J]. Engineering Structures, 2021, 228: 111540.
    [6] Kim MJ, Kim HG, Lee YJ, et al. Pure torsional behavior of RC beams in relation to the amount of torsional reinforcement and cross-sectional properties[J]. Construction and Building Materials, 2020, 260: 119801.
    [7] American Concrete Institute (ACI). Building code requirements for structural concrete. Technical Committee Document No.318-19, Farmington Hills, Mich; 2019.
    [8] Eurocode 2: Design of concrete structures, General rules and rules for buildings. EN 1992-A1-2014. European Standard. 2014
    [9] Canadian Standards Association, Design of Concrete Structures A23.3-04.Rexdale, Ontario: Canadian Standards Association; 2004.
    [10] GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.
    [11] Fang IK. Shiau JK. Torsional behavior of normal-and high-strength concrete beams[J]. ACI Structural Journal, 2004, 101(3): 304-313.
    [12] Koutchoukali NE, Belarbi A. Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement[J]. ACI Structural Journal, 2001, 98(4): 462-469.
    [13] Bernardo L A, Lopes SMR. Torsion in High-Strength Concrete Hollow Beams: Strength and Ductility Analysis[J]. ACI Structural Journal, 2009, 106(1): 39-48.
    [14] Jeng CH. Unified softened membrane model for torsion in hollow and solid reinforced concrete members: modeling precracking and postcracking behavior[J]. Journal of Structural Engineering, 2015, 141(10): 04014243.
    [15] Deifalla A. Refining the torsion design of fibered concrete beams reinforced with FRP using multi-variable non-linear regression analysis for experimental results[J]. Engineering Structures, 2021, 226: 111394.
    [16] CSA. Design and construction of buildings components with ?ber-reinforced polymers. Canadian Standards Association (CSA), CSA S806-12, Toronto; 2012.
    [17] GB 50068-2018, 建筑结构可靠性设计统一标准[S]. 北京: 中国建筑工业出版社, 2018.
    [18] Joh C, Kwahk I, Lee J, et al. Torsional behavior of high-strength concrete beams with minimum reinforcement ratio[J]. Advances in Civil Engineering, 2019, 2019.
    [19] Chiu HJ, Fang IK, Young W T, et al. Behavior of reinforced concrete beams with minimum torsional reinforcement[J]. Engineering Structures, 2007, 29(9): 2193-2205.
    [20] 王振东, 李东杰. 钢筋混凝土纯扭构件截面尺寸效应的试验[J]. 哈尔滨工业大学学报, 2006(08): 1374-1377.
    [21] 王晓菡, 柳炳康, 周徽. 再生混凝土纯扭构件抗震性能的有限元分析[J]. 山西建筑, 2021, 47(23): 32-34.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:131
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-20
  • 最后修改日期:2022-07-05
  • 录用日期:2022-08-09
文章二维码