水化蒙脱石拉伸力学特性的分子动力学模拟研究
CSTR:
作者:
作者单位:

华南理工大学 土木与交通学院

中图分类号:

TU443

基金项目:

国家自然科学基金(11672108);国际(地区)合作与交流项目(11911530692)


Study on tensile mechanical properties of hydrated montmorillonite based on molecular dynamics
Author:
Affiliation:

School of Civil Engineering and Transportation,South China University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    了解蒙脱石在拉伸状态下的力学行为在地球科学、岩土力学等领域至关重要,但现有的理论和方法难以在小间距范围内预测其水化力学性质及关键机理。本文通过编写施加应力-计算应变Perl语言脚本,首次进行了不同水化量蒙脱石拉伸应力下的分子动力学计算模拟与应力应变分析,确定了其不同应力阶段的力学特性、相互作用机制和微观结构演化。结果表明:蒙脱石内层水化对于极限应力和拉伸模量的弱化效应明显,且在水化初期弱化幅度会更大;体积水化膨胀主要源于晶格长度c的线性增长。Z方向的拉伸模量远小于平面内,即应力对表面Z方向的力学行为影响最大,当达到极限拉应力后,会出现整层分离的破坏现象;内层是大部分形变的主要原因,并且支配着蒙脱石的拉伸力学性能;Z方向拉应力主要造成晶格长度c和晶格角β的增加,而在X和Y方向拉应力下,则主要发生β的减少和增加。层电荷密度越高,结合水膜越密实,形成氢键数目越多,体积和晶格长度c越小,抗拉力学性能也越强。本工作定量揭示了蒙脱石在不同水化、拉应力状态、层电荷密度下的基本力学性质及内在结构机理,为岩土灾害宏(微)观防治、土体性质及工程适应性评价奠定了基础。

    Abstract:

    Knowing the mechanical behavior of montmorillonite (MMT) under tensile stress is crucial in earth science and geomechanics. However, existing theories and methods are difficult to predict its hydration mechanical properties and inner mechanism within the small layer-spacing. In this paper, through the stress-strain script, tensile molecular dynamics (MD) simulation and stress-strain analysis are conducted on MMT with different hydration amounts to determine the mechanical properties, interaction mechanism, and microstructure evolution. It is found that the weakening effect of interlayer hydration on ultimate stress and tensile modulus is obvious, and the weakening effect is greater in the early stage of hydration; the volume expansion with hydration results from the linear increase in lattice length c. The Z direction tensile modulus is much smaller than the in-plane, that is, the stress has the greatest influence on the mechanical behavior of surface Z direction; when the ultimate stress is reached, the layer separation failure occurs; besides, interlayer is the main cause of deformation and dominates the tensile mechanical properties of MMT; the tensile stress in Z direction causes the increase of lattice length c and lattice angle β, while in the X and Y directions, it is mainly the decrease and increase of β. The higher the layer charge density, the denser the bound-water film, the more hydrogen bonds formed, the smaller the volume and lattice length c, and the stronger the tensile mechanical properties. This work quantitatively reveals the basic mechanical properties and internal structure mechanism of MMT under different hydration, tensile stress, and layer charge density, laying a foundation for macro (micro) control of geotechnical disasters and evaluation of soil engineering performance.

    参考文献
    [1] Katti D R, Schmidt S R, Ghosh P, et al. Molecular modeling of the mechanical behavior and interactions in dry and slightly hydrated sodium montmorillonite interlayer [J]. Canadian Geotechnical Journal, 2007, 44(4): 425-435.
    [2] Sayers C M, den Boer L D. The elastic properties of clay in shales [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5965-5974.
    [3] Mukerji T, Dvorkin J. The Rock Physics Handbook 2ed [M]. Cambridge University Press, 2009.
    [4] Vyzhva S A, Prodayvoda G T, Vyzhva A S. Elastic properties of some clay minerals [J]. Nafta-Gaz, 2014, 70(11): 743-756.
    [5] 杨文钰, 郑俊杰, 章荣军,等. 考虑黏土土性参数与支护压力变异性的盾构掌子面稳定性分析[J]. 土木与环境工程学报(中英文), 2021, 43(6):11.YANG W Y, ZHENG J J, ZHANG R J, et al. Face stability analysis of shield tunnel considering variability of soil parameters and support pressure in clay [J]. Journal of Civil and Environmental Engineering, 2021, 43(6): 11. (in Chinese)
    [6] Zhou J, Chen X. Stress-strain behavior and statistical continuous damage model of cement mortar under high strain rates [J]. Journal of materials in civil engineering, 2013, 25(1): 120-130.
    [7] 刘珊. 结构性黏土力学特性与微观形态试验研究[D]. 中国矿业大学, 2014.LIU S. Experimental study on mechanical properties and micro-structure of structural clay [D]. China University of Mining and Technology, 2014. (in Chinese)
    [8] Pradhan S M, Katti K S, Katti D R. Evolution of molecular interactions in the interlayer of Na-montmorillonite swelling clay with increasing hydration [J]. International Journal of Geomechanics, 2014, 15(5): 04014073.
    [9] Honty M, Frederickx L, Wang L, et al. Boom Clay pore water geochemistry at the Mol site: Experimental data as determined by in situ sampling of the piezometers [J]. Applied Geochemistry, 2022, 136: 105156.
    [10] 张明洋, 杨晓松. 蒙脱石的弹性性质实验[J]. 地震地质, 2020, 42(5):11.ZHANG M Y, YANG X S. Experimental studies on elastic properties of montmorillonite [J]. Seismology and Geology, 2020, 42(5): 11. (in Chinese)
    [11] Bobko C P. Assessing the mechanical microstructure of shale by nanoindentation: The link between mineral composition and mechanical properties [D]. Massachusetts Institute of Technology, 2008.
    [12] 周继凯, 金龙, 陈徐东. 水化硅酸钙动态力学性能的分子动力学模拟研究[J]. 防灾减灾工程学报, 2014, 34(3):277-282.ZHOU J K, JIN L, CHEN X D. Molecular dynamic simulation for mechanical properties of C-S-H [J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(3): 277-282. (in Chinese)
    [13] Lau D, Jian W, Yu Z, et al. Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges [J]. Composites Part B: Engineering, 2018, 143: 282-291.
    [14] Karaborni S, Smit B, Heidug W, et al. The swelling of clays: molecular simulations of the hydration of montmorillonite [J]. Science, 1996, 271(5252): 1102-1104.
    [15] Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266.
    [16] Katti D R, Srinivasamurthy L, Katti K S. Molecular modeling of initiation of interlayer swelling in Na–montmorillonite expansive clay [J]. Canadian Geotechnical Journal, 2015, 52(9): 1385-1395.
    [17] 张亚云, 陈勉, 邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018, 046(10):1489-1498.ZHANG Y Y, CHEN M, DENG Y, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites [J]. Journal of the Chinese Ceramic Society, 2018, 046(10): 1489-1498. (in Chinese)
    [18] 李勤, 陆现彩, 张立虎,等. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报:自然科学版, 2019, 55(6):9.LI Q, LU X C, ZHANG L H, et al. Molecular simulation of interlayer cation exchange of montmorillonite [J]. Journal of Nanjing University(Natural Sciences), 2019, 55(6): 9. (in Chinese)
    [19] 杨微, 陈仁朋, 康馨. 基于分子动力学模拟技术的黏土矿物微观行为研究应用[J]. 岩土工程学报, 2019(A01):4.YANG W, CHEN R P, KANG X. Application of molecular dynamics simulation method in micro-properties of clay minerals [J]. Chinese Journal of Geotechnical Engineering, 2019(A01): 4 (in Chinese)
    [20] Yang Y, Adhikari S, Xu G. Molecular Dynamics Simulation in the Interlayer of Mixed-Layer Clays Due to Hydration and Swelling Mechanism [J]. Crystals, 2021, 11(6):586.
    [21] 杨亚帆, 王建州, 商翔宇,等. 高温下钙蒙脱石膨胀特性的分子动力学模拟[J]. 物理学报, 2022, 71(4):12.YANG Y F, WANG J Z, SHANG X Y, et al. Molecular dynamics simulation of swelling properties of Ca-montmorillonite at high temperatures [J]. Acta Physica Sinica, 2022, 71(4): 12. (in Chinese)
    [22] Viani A, Gualtieri A F, Artioli G. The nature of disorder in montmorillonite by simulation of X-ray powder patterns [J]. American Mineralogist, 2002, 87(7): 966-975.
    [23] Cases J M, Berend I, Besson G, et al. Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [24] Morodome S, Kawamura K. Swelling behavior of Na- and Ca-montmorillonite up to 150 °C by in situ X-ray diffraction experiments [J]. Clays and Clay Minerals, 2009, 57(2): 150-160.
    [25] Wang Y, Yang G, Wang W, et al. Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations [J]. Journal of Molecular Liquids, 2019, 277: 261-268.
    [26] Carrier B, Vandamme M, Pellenq R J M, et al. Elastic properties of swelling clay particles at finite temperature upon hydration[J]. The Journal of Physical Chemistry C, 2014, 118(17): 8933-8943.
    [27] 宋华苗, 金祖权, 王攀,等. 水环境下掺铝硅质基体树脂粘结界面性能演变的分子动力学模拟与验证[J]. 土木与环境工程学报(中英文), 2021, 43(5):9.SONG H M, JIN Z Q, WANG P, et al. A molecular dynamics simulation and validation of bonding behavior evolution of aluminum-doped silica matrix-resin bonding interface under water environment [J]. Journal of Civil and Environmental Engineering, 2021, 43(5): 9. (in Chinese)
    [28] Rapaport D C. The art of molecular dynamics simulation[M]. Cambridge university press, 2004.
    [29] Schmidt S R, Katti D R, Ghosh P, et al. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics [J]. Langmuir, 2005, 21(17): 8069-8076.
    [30] Wei P, Zheng Y Y, Xiong Y, et al. Effect of water content and structural anisotropy on tensile mechanical properties of montmorillonite using molecular dynamics[J]. Applied Clay Science, 2022, 228: 106622.
    [31] Rahromostaqim M, Sahimi M. Molecular dynamics simulation of hydration and swelling of mixed-layer clays[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14631-14639.
    [32] Chen B, Evans J R G. Elastic moduli of clay platelets[J]. Scripta materialia, 2006, 54(9): 1581-1585.
    [33] Sayers C M, Boer L. The elastic anisotropy of clay minerals[J]. Geophysics, 2016, 81(5):1-11.
    [34] Zartman G D, Liu H, Akdim B, et al. Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress[J]. The Journal of Physical Chemistry C, 2010, 114(4): 1763-1772.
    [35] 高仁波, 赵云良, 陈立才,等. 蒙脱石层电荷密度对其二维纳米片剥离的影响[J]. 硅酸盐学报, 2021, 49(7):1420-1428.GAO R B, ZHAO Y L, CHEN L C, et al. Effect of layer charge density on the exfoliation of montmorillonite to prepare two-dimensional nanosheets [J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1420-1428. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

引用本文
分享
文章指标
  • 点击次数:246
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-04-08
  • 最后修改日期:2022-07-30
  • 录用日期:2022-08-09
文章二维码