碳化作用对固化铅污染土强度特性和微观结构的影响
CSTR:
作者:
作者单位:

1. 黄河勘测规划设计研究院有限公司;2. 水利部黄河流域水治理与水安全重点实验室(筹);3. 东南大学

作者简介:

曹智国(1990-),男,河南三门峡人,博士,主要从事特殊土处理和隧道工程等方面的研究。E-mail:caozhgyrec@163.com

中图分类号:

TU41

基金项目:

国家自然科学基金项目(面上项目),水利重大关键技术研究项目


Effects of carbonation on strength and microstructure of cement-solidified lead-contaminated soils
Author:
Affiliation:

1. Yellow River Engineering Consulting Co., Ltd.;2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under construction);3. Southeast University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碳化作用是影响水泥固化重金属污染土耐久性的一个重要因素。为探明长期服役过程中碳化作用下固化污染土强度特性的演化规律,人工配制铅污染土,采用水泥固化处理后进行碳化试验,分析碳化作用和压实度对固化土无侧限抗压强度的影响规律,并通过扫描电镜和压汞试验,分析碳化作用对微观矿物形态和微观孔隙结构的影响。试验结果表明,碳化作用下固化铅污染土的无侧限抗压强度降低,15 %水泥掺入量的固化土强度降低44 % ~ 45 %,这是由碳化反应产物填充增强效应和土颗粒间胶结作用减弱共同作用的结果。固化土强度与孔隙率具有很好的幂函数关系,揭示了填充作用对固化土强度的影响。碳化作用下固化铅污染土中观察到较多的结晶状态良好的碳化反应产物CaCO3,固化土总的孔隙体积减小,< 0.01 μm的凝胶孔和0.01 μm ~ 0.1 μm的小毛细孔所占的比例减少,0.1 μm ~ 10 μm的大毛细孔和> 10 μm的大孔隙所占的比例增加。

    Abstract:

    Carbonation is an important factor affecting the durability of cement-solidified heavy metal-contaminated soils. In order to explore the influence of carbonation on the strength of solidified contaminated soils, lead-contaminated soils were artificially prepared, and carbonation tests were carried out after cement solidification treatment. The effects of carbonation and compactness on unconfined compressive strength of solidified soils were analyzed, and the effects of carbonation on micro mineral morphology and micro pore structure were also analyzed by electron microscope scanning and mercury injection tests. The test results show that unconfined compressive strength of solidified lead-contaminated soils decreases under carbonation, the strength of solidified soils with 15% cement content is reduced by 44% ~ 45%, which is the result of the filling enhancement effect of carbonation reaction products and the weakening of cementation between soil particles. There is a good power function relationship between unconfined compressive strength and porosity of solidified soils, which reveals the influence of filling on strength of solidified soils. Under carbonation, crystalline carbonation reaction product CaCO3 is observed, the total pore volume of solidified soils decreases, the proportion of gel pores less than 0.01μm and capillary pores between 0.01μm and 0.1μm decreases, and the proportion of capillary pores between 0.1μm and 10μm and macro pores greater than 10μm increases.

    参考文献
    [1] 刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6-30.LIU Songyu, ZHAN Liangtong, HU Liming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice [J]. China Civil Engineering Journal, 2016, 49(3): 6-30. (in Chinese)
    [2] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize [J]. Journal of Hazardous Materials, 2014, 266: 141-166.
    [3] ASHRAF W. Carbonation of cement-based materials: Challenges and opportunities [J]. Construction and Building Materials, 2016, 120: 558-570.
    [4] 曹智国, 章定文, 彭之晟, 等. 水泥固化铅污染土碳化深度变化规律及预测方法[J]. 东南大学学报(自然科学版), 2021, 51(4): 631-639.CAO Zhiguo, ZHANG Dingwen, PENG Zhisheng, et al. Change regularities and prediction method for carbonation depth of cement-stabilized soils contaminated with lead [J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 631-639. (in Chinese)
    [5] BRANCH J L, EPPS R, KOSSON D S. The impact of carbonation on bulk and ITZ porosity in microconcrete materials with fly ash replacement [J]. Cement and Concrete Research, 2018, 103: 170-178.
    [6] ZHANG D W, CAO Z G, ZHANG T, et al. Effect of carbonation on leaching behavior, engineering properties and microstructure of cement-stabilized lead-contaminated soils [J]. Environmental Earth Sciences, 2017, 76: 724.
    [7] PANDEY B, KINRADE S D, CATALAN L J J. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes [J]. Journal of Environmental Management, 2012, 101: 59–67.
    [8] LANGE L C, HILLS C D, POOLE A B. Effect of carbonation on properties of blended and non-blended cement solidified waste forms [J]. Journal of Hazardous Materials, 1997, 52: 193–212.
    [9] LANGE L C, HILLS C D, POOLE A B. The effect of accelerated carbonation on the properties of cement-solidified waste forms [J]. Waste Management, 1996, 16(8): 757–763.
    [10] JUNIOR A N, FILHO R D T, DWECK J, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes [J]. Construction and Building Materials, 2015, 77: 448–454.
    [11] BERNAL S A, PROVIS J L, GUTIERREZ R M, et al. Accelerated carbonation testing of alkali-activated slag/ metakaolin blended concretes: effect of exposure conditions [J]. Materials and Structures, 2015, 48(3): 653–669.
    [12] 中华人民共和国住房与城乡建设部. GB/T 50145-2007 土的工程分类标准[S]. 北京: 中国计划出版社, 2007.
    [13] BOARDMAN D J. Lime stabilization: clay-metal-lime interactions [D]. Loughborough, UK: Loughborough University, 1999.
    [14] American Society for Testing and Materials. ASTM D2166-06 Standard test method for unconfined compressive strength of cohesive soil [S]. Philadephta: ASTM Press, 2006.
    [15] XIA W Y, DU Y J, LI F S, et al. In-situ solidification /stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder [J]. Journal of Hazardous Materials, 2019, 369: 353–361.
    [16] XIA W Y, DU Y J, LI F S, et al. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/ stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter [J]. Construction and Building Materials, 2019, 210: 278-288.
    [17] 宁建国, 黄新. 固化土结构形成及强度增长机理试验[J]. 北京航空航天大学学报, 2006, 32(1): 97–102.NING Jianguo, HUANG Xin. Experiment on structural formation and mechanism of strength increasing of stabilized soil [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1): 97–102. (in Chinese)
    [18] MOLLAH M Y A, HESS T R, TSAI Y N, et al. An FTIR and XPS investigation of the effects of carbonation on the solidification/stabilization of cement based systems – Portland type V with zinc [J]. Cement and Concrete Research, 1993, 23: 773–784.
    [19] ANTEMIR A, HILLS C D, CAREY P J, et al. Long-term performance of aged waste forms treated by stabilization/ solidification [J]. Journal of Hazardous Materials, 2010, 181: 65–73.
    [20] CONSOLI N C, CRUZ R C, FLOSS M F, et al. Parameters controlling tensile and compressive strength of artificially cemented sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 759–763.
    [21] 章定文, 曹智国, 刘松玉, 等. 水泥固化铅污染土的电阻率特性与经验公式[J]. 岩土工程学报, 2015, 37(9): 1685–1691.ZHANG Dingwen, CAO Zhiguo, LIU Songyu, et al. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685–1691. (in Chinese)
    [22] BENSTED J, BARNES P. Structure and performance of cements [M]. UK: Taylor & Francis, 2002.
    [23] MO L, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO [J]. Cement and Concrete Research, 2012, 42: 769–777.
    [24] 刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547–554.LIU Zhaopeng, DU Yanjun, LIU Songyu, et al. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547–554. (in Chinese)
    [25] HORPIBULSUK S, RACHAN R, CHINKULKIJINIWAT A, et al. Analysis of strength development in cement-stabilized silty clay from microstructural considerations [J]. Construction and Building Materials, 2010, 24(10): 2011–2021.
    [26] NGALA V T, PAGE C L. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes [J]. Cement and Concrete Research, 1997, 27(7): 995–1007.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:309
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-04-18
  • 最后修改日期:2022-07-14
  • 录用日期:2022-08-09
文章二维码