剪力墙结构智能化生成式设计方法:从数据驱动到物理增强
CSTR:
作者单位:

清华大学 土木系 北京

中图分类号:

TU318

基金项目:

国家重点研发计划(2019YFE0112800);腾讯基金会科学探索奖


Intelligent generative structural design methods for shear wall buildings: from data-driven to physics-enhanced
Author:
Affiliation:

Department of Civil Engineering,Tsinghua University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    建筑结构的智能化方案设计是智能建造的重要内容。既有研究提出了基于深度神经网络的剪力墙结构生成式设计方法框架、智能设计算法、设计性能评价方法等,完成了从数据驱动到物理增强的智能化设计方法的发展。但是,尚未有相关研究针对数据驱动和物理增强方法进行不同设计条件下的设计能力详细对比,并且基于计算机视觉的评价与基于力学性能的评价方法尚未有明确的关系,难以有效保证计算机视觉评价方法的合理性。本研究基于深度生成式算法对比和算例分析,开展了数据驱动和物理增强数据驱动方法的详细对比;并进一步验证了基于计算机视觉评价与基于力学分析评价方法的正相关性。结果证明了数据驱动的方法易受到数据质量与数量的约束,而物理增强数据驱动的方法设计性能更加稳定,基本摆脱数据质量和数量的约束;基于计算机视觉的综合评价指标SCV的合理性阈值为0.5,对应力学性能差异约为10%。

    Abstract:

    Intelligent structural design in the scheme phase is an essential component of intelligent construction. Existing studies have proposed the deep neural network-based framework of intelligent generative structural design, intelligent design algorithms, and design performance evaluation methods for shear wall structures, which have developed intelligent structural design methods from data-driven to physics-enhanced data-driven. However, little detailed design performance comparison of data-driven and physics-enhanced methods under different design conditions is conducted. Furthermore, the relationship between the computer vision-based and mechanical analysis-based evaluation methods is still unclear, resulting in difficulties in effectively guaranteeing the rationality of the computer vision-based evaluation methods. Hence, in this study, the comparative analysis of data-driven and physics-enhanced intelligent design methods is conducted by algorithm comparison and case studies; and the consistent relationship between computer vision-based and mechanical analysis-based evaluation methods is validated. The comparison results reveal that data-driven methods are more prone to be limited by the quality and quantity of training data. In contrast, the physics-enhanced data-driven design method is more robust under different design conditions and is little affected by the data-caused limitation. Moreover, the rationality threshold of the computer vision-based evaluation index (SCV) is 0.5, corresponding to the difference in the mechanical performance of approximately 10%.

    参考文献
    [1] 鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(05): 1-11.BAO Y Q, LI H. Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52(05): 1-11. (in Chinese)
    [2] 勾红叶, 杨彪, 华辉, 等. 桥梁信息化及智能桥梁2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(05): 14-27.GOU H Y, YANG B, HUA H, et al. State-of-the-art review of bridge information and intelligent bridge in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(05): 14-27. (in Chinese)
    [3] 赵天祺, 勾红叶, 陈萱颖, 等. 桥梁信息化及智能桥梁2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 268-279.ZHAO T Q, GOU H Y, CHEN X Y, et al. State-of-the-art review of bridge information and intelligent bridge in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 268-279. (in Chinese)
    [4] 刘红波, 张帆, 陈志华, 等.人工智能在土木工程领域的应用研究现状及展望[J/OL]. 土木与环境工程学报(中英文): 1-20 [2022-03-29].LIU H B, ZHANG F, CHEN Z H, et al. Applied research status and prospects of artificial intelligence in civil engineering field[J/OL]. Journal of Civil and Environmental Engineering, 1-20 [2022-03-29]. (in Chinese)
    [5] BROWN N C, MUELLER C T. Design for structural and energy performance of long span buildings using geometric multi-objective optimization[J]. Energy and Buildings, 2016, 127: 748-761.
    [6] ZHANG Y, MUELLER C. Shear wall layout optimization for conceptual design of tall buildings[J]. Engineering Structures, 2017, 140: 225-240.
    [7] TAFRAOUT S, BOURAHLA N, BOURAHLA Y, et al. Automatic structural design of RC wall-slab buildings using a genetic algorithm with application in BIM environment[J]. Automation in Construction, 2019, 106: 102901.
    [8] 何政, 来潇. 参数化结构设计基本原理、方法及应用[M]. 北京: 中国建筑工业出版社, 2020
    [9] 杜修力, 刘占省, 赵研. 智能建造概论[M]. 北京: 中国建筑工业出版社, 2020.
    [10] 周绪红, 刘界鹏, 冯亮, 等. 建筑智能建造技术初探及其应用[M]. 北京: 中国建筑工业出版社, 2021.
    [11] SUN H, BURTON H V, HUANG H. Machine learning applications for building structural design and performance assessment: state-of-the-art review[J]. Journal of Building Engineering, 2021, 33: 101816.
    [12] LIAO W J, LU X Z, HUANG Y L, et al. Automated structural design of shear wall residential buildings using generative adversarial networks[J]. Automation in Construction, 2021, 132: 103931.
    [13] 廖文杰, 黄羽立, 郑哲, 等. 基于生成对抗网络融合文本图像数据的剪力墙结构生成式设计方法[C]//.第30届全国结构工程学术会议论文集(第Ⅲ册). 2021: 381-387.LIAO W J, HUANG Y L, ZHENG Z, et al. Building structural generative design using generative adversarial networks-based fused-image-text to image translation method[C]//. Proceedings of the 30th National Conference on Structural Engineering (NO.Ⅲ). 2021: 381-387. (in Chinese)
    [14] LU X Z, LIAO W J, ZHANG Y, et al. Intelligent structural design of shear wall residence using physics-enhanced generative adversarial networks[J]. Earthquake Engineering Structural Dynamics, 2022.
    [15] HUANG X, XIE M. Evolutionary topology optimization of continuum structures: Methods and applications[M]. John Wiley Sons, 2010.
    [16] SHEA K, AISH R, Gourtovaia M. Towards integrated performance-driven generative design tools[J]. Automation in Construction, 2005, 14(2): 253-264.
    [17] 赵宪忠, SHEA K. 空间杆系结构的智能生成与设计[J]. 建筑结构学报, 2010, 31(09): 63-69.ZHAO X Z, SHEA K. Intelligent generation and design of spatial truss structures[J]. Journal of Building Structures, 2010, 31(09): 63-69. (in Chinese)
    [18] OH S, JUNG Y, KIM S, et al. Deep generative design: Integration of topology optimization and generative models[J]. Journal of Mechanical Design, 2019, 141(11).
    [19] SHU D, CUNNINGHAM J, STUMP G, et al. 3d design using generative adversarial networks and physics-based validation[J]. Journal of Mechanical Design, 2020, 142(7): 071701.
    [20] ZHENG H, HUANG W X. Architectural blueprints recognition and generation through machine learning[C]. Mexico City: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), 2018.
    [21] CHAILLOU S. ArchiGAN: a generative stack for apartment building design[EB/OL]. 2019 [2019-7-17]. https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/.
    [22] NAUATA N, CHANG K H, CHENG C Y, et al. House-gan: Relational generative adversarial networks for graph-constrained house layout generation[C]. Glasgow: 16th European Conference on Computer Vision, ECCV, 2020: 162-177.
    [23] NAUATA N, HOSSEINI S, CHANG K H, et al. House-GAN++: Generative adversarial layout refinement networks[J]. arXiv preprint arXiv:2103.02574. 2021.
    [24] CHANG K H, CHENG C Y. Learning to simulate and design for structural engineering[C]//. Virtual: Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020: 1426-1436.
    [25] PIZARRO P N, MASSONE L M, ROJAS F R, et al. Use of convolutional networks in the conceptual structural design of shear wall buildings layout[J]. Engineering Structures, 2021, 239: 112311.
    [26] PIZARRO P N, MASSONE L M. Structural design of reinforced concrete buildings based on deep neural networks[J]. Engineering Structures, 2021, 241: 112377.
    [27] QIAN W, XU Y, LI H. A self-sparse generative adversarial network for autonomous early-stage design of architectural sketches[J]. Computer-Aided Civil and Infrastructure Engineering, 2021.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-06-02
  • 录用日期:2022-06-22
文章二维码