基于机器学习的高强钢焊接等截面箱型柱整体稳定性预测研究
CSTR:
作者单位:

1.中国矿业大学;2.中国建筑第八工程局有限公司南方分公司;3.西南交通大学


Research on prediction of Overall Stability of Welded Constant Section Box Columns Made of High Strength Steel based on machine learning model
Author:
Affiliation:

1.China Universoty of Mining and Technology;2.South Branch of China Construction Eighth Engineering Bureau Co., Ltd;3.Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目前针对高强钢构件整体稳定性的研究多采用有限元建模或实验室试验方法,而基于机器学习的预测方法能够给预测的准确性和便捷性带来极大的提升。为了准确预测高强钢焊接等截面箱型柱的整体稳定性,提出了使用纤维模型构建数据库,并利用机器学习建立预测模型的方法。首先确定了模型的输入输出参数,并通过纤维模型方法建立数据库。接着,选用常见的三种不同类型的机器学习模型和现有规范中经验模型进行预测,并依据评价指标进行性能对比。最后,根据可解释算法分析机器学习模型的合理性。研究结果表明:大部分机器学习模型预测结果与实验结果吻合度略高于现有规范中的经验模型,其中高斯过程回归模型对高强钢构件整体稳定性的预测表现最优;机器学习预测模型中各类参数对构件整体稳定性的影响趋势符合预期,验证了机器学习模型的合理性和可靠性;构件的正则化长细比对预测结果影响最大,而构件的初始缺陷的影响相对最小。

    Abstract:

    At present, finite element modeling or laboratory test methods are often used in the research of the overall stability of high-strength steel members. However, the prediction method based on machine learning has greatly improved the accuracy and convenience of component performance prediction. To accurately predict the overall stability of welded constant section box columns made of high strength steel, a method of constructing a database based on the fiber model and establishing prediction models by machine learning is proposed in this paper. Firstly, the input and output parameters of the model are determined, and the database is established by the fiber model method. Then, three different types of machine learning models and empirical models in the existing specifications are selected for prediction, and the performance is compared according to the evaluation index. Finally, the rationality of machine learning models is analyzed according to interpretable algorithms. The results show that the prediction results of most machine learning models are in good agreement with the experimental results, which are slightly higher than the empirical models in the existing codes, and the Gaussian process regression model has the best prediction performance for the overall stability of high-strength steel members; The influence trend of various parameters on the overall stability of components meets the expectation, which verifies the rationality and reliability of the machine learning model; The regularized slenderness ratio has the greatest influence on the prediction results, while the initial defects have the least influence.

    参考文献
    [1] 周祎, 仵振, 潘毅, 等. 高强钢焊接箱形柱受力性能研究(Ⅱ):二阶非弹性分析 [J]. 建筑结构学报.ZHOU Y, WU Z, PAN Y, et al. Research on mechanical properties of high strength steel welded box columns (Ⅱ) : second-order inelastic analysis [J]. Journal of Building Structures, 2022, 43(07) (in Chinese)
    [2] 薛加烨. 高强度钢材受压构件整体稳定性能试验研究 [D]. 南京:东南大学, 2014.XUE J Y. Experimental Research on the Overall Buckling Behavior of High Strength Steel Members under Compression [D]. Southeast University, 2014. (in Chinese)
    [3] 邱林波, 侯兆新, 薛素铎, 等. Q550高强度钢焊接H形柱轴心受压承载力试验研究[J]. 建筑钢结构进展, 2015, 17(03): 7-12, 18.QIU L B, HOU Z X, XUE S D, et al. Experimental Study on Axial Comperssion Capacity of Welding H-Shaped Q550 High-Strength Steel Columns [J]. Progress in Steel Building Structures, 2015, 17(03): 7-12, 18. (in Chinese)
    [4] 赵金友, 李晶, 王钧, 等. Q460高强钢焊接工字形截面简支梁整体稳定性能与设计方法研究[J]. 建筑结构学报, 2021, 42(11): 61-70.ZHAO J Y, LI J, WANG J, et al.Design method and overall buckling behavior of simply-supported beams with Q460 high strength steel welded I-section [J]. Journal of Building Structures, 2021, 42(11): 61-70. (in Chinese)
    [5] BAN H Y, SHI G, SHI Y J, et al. Overall buckling behavior of Q460 high strength steel welded box section columns under axial compression [J]. Journal of Building Structures, 2013, 34(01): 22-29.
    [6] LIMBACHIYA V, SHAMASS R. Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams [J]. Thin–Walled Structures, 2021, 161: 107414.
    [7] WAKJIRA T G, IBRAHIM M, EBEAD U, et al. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM [J]. Engineering Structures, 2022, 255: 113903.
    [8] SAROTHI S Z, AHMED K S, KHAN N I, et al. Predicting bearing capacity of double shear bolted connections using machine learning [J]. Engineering Structures, 2022, 251: 113497.
    [9] 薛红新. 基于机器学习方法的分类与预测问题研究[D]. 太原:中北大学, 2019.XUE H X. Research on the Problems of Classification and Prediction Based on Machine Learning Methods [D]. North University of China, 2019. (in Chinese)
    [10] 陈骥. 钢结构稳定理论与设计[M]. 第四版. 北京: 科学出版社, 2008.HEN J. Stability theory and design of steel structure [M]. Fourth Edition. BeiJing: Science Press, 2008.
    [11] 潘毅, 仵振, 周祎, 等. 高强钢焊接箱形柱受力性能研究(Ⅰ):残余应力统一分布模型[J]. 建筑结构学报, 2022, 43(03): 138-147.PAN Y, WU Z, ZHOU Y, et al. Study on mechanical properties of high strength steel welded box columns (Ⅰ) :unified model of residual stress [J] Journal of Building Structures, 2022, 43(03): 138-147. (in Chinese)
    [12] 罗婧文. 考虑初始缺陷和残余应力影响的高强钢压杆稳定性分析与评价[D]. 成都:西南交通大学, 2020.LUO J W. Stability analysis and evaluation of high-strength steel compression column considering the effect of initial defects and residual stress [D]. Southwest Jiaotong University, 2020. (in Chinese)
    [13] REHMAN TAHIR Z U, MANDAL P, ADIL M T, et al. Application of artificial neural network to predict buckling load of thin cylindrical shells under axial compression [J]. Engineering Structures, 2021, 248: 113221.
    [14] VENDRAMELL FERREIRA F P, SHAMASS R, LIMBACHIYA V, et al. Lateral–torsional buckling resistance prediction model for steel cellular beams generated by Artificial Neural Networks (ANN) [J]. Thin-Walled Structures, 2022, 170: 108592.
    [15] 胡鑫. 基于人工神经网络的HPC强度预测[D].长沙: 湖南大学, 2014.U X. Prediction of high performance concrete strength based on artificial neural network [D]. Hunan University, 2014.
    [16] KANG M-C, YOO D-Y, GUPTA R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete [J]. Construction and Building Materials, 2021, 266: 121117.
    [17] DEGTYAREV V V. Neural networks for predicting shear strength of CFS channels with slotted webs [J]. Journal of Constructional Steel Research, 2021, 177: 106443.
    [18] 张寅. 用于回归预测的高斯过程模型研究[D]. 天津:河北工业大学, 2014.HANG Y. Research on Gaussian Process for Regression and Prediction [D]. Heibei University of Technology, 2014.
    [19] 李国强, 王彦博, 陈素文, 等.Q460高强钢焊接箱形柱轴心受压极限承载力参数分析[J]. 建筑结构学报, 2011, 32(11): 149-155.I G Q, WANG Y B, CHEN S W, et al. Parametric analysis of ultimate bearing capacity of Q460 high strength steel welded box columns under axial compression [J]. Journal of Building Structures, 2011, 32(11): 149-155.
    [20] 李国强, 李天际, 王彦博. Q690高强钢焊接箱形轴压构件整体稳定研究及设计建议[J]. 建筑结构学报, 2017, 38(10): 1-9.I G Q, LI T J, WANG Y B. Overall buckling behavior and design of Q690 high-strength steel welded box-columns subjected to axial compression [J]. Journal of Building Structures,2017, 38(10): 1-9.
    [21] 班慧勇, 施刚, 石永久. 高强钢焊接箱形轴压构件整体稳定设计方法研究[J]. 建筑结构学报, 2014, 35(05): 57-64.AN H Y, SHI G, SHI Y J. Research on design method for overall buckling behavior of welded box columns fabricated from high-strength steels [J]. Journal of Building Structures,2014, 35(05): 57-64.
    [22] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine [J]. Annals of Statistics, 2001, 29(5): 1189-232.
    [23] GOLDSTEIN A, KAPELNER A, BLEICH J, et al. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation [J]. Journal of Computational and Graphical Statistics, 2015, 24(1): 44-65.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-30
  • 最后修改日期:2022-10-31
  • 录用日期:2022-11-27
文章二维码