地质聚合物固化土研究现状及展望
CSTR:
作者:
作者单位:

1.湘潭大学土木工程与力学学院;2.湖南大学土木工程学院

基金项目:

国家自然科学基金(51909086) ;湖南省教育厅优秀青年项目(21B0123);中国水利水电科学研究院水利部水工程建设与安全重点实验室开放研究基金(202109)


Research status and prospect of geopolymer solidified soil
Author:
Affiliation:

1.College of Civil Engineering and Mechanics;2.Xiangtan University;3.College of Civil Engineering;4.Hunan University

Fund Project:

National Natural Science Foundation of China (NO.51909086);Outstanding Youth Project of Hunan Education Department(NO.21B0123);Open Research Fund of Key Laboratory of Water Engineering Construction and Safety of Ministry of Water Resources, China Institute of Water Resources and Hydropower Research(NO.202109)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [94]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    地质聚合物(Geopolymer)作为一种新兴的土壤固化剂,是一类以富硅铝酸盐矿物为前驱体,在碱激发剂作用下形成的绿色无机胶凝材料,具有力学性能良好、耐久性优异以及低碳环保等优点,能够有效克服水泥/石灰等传统土壤固化剂能耗高、污染大以及耐久性差等缺点,被国内外学者普遍认为是传统土壤固化剂的理想替代品。为明确地质聚合物对土壤的加固机理和增强效果,本文回顾了近年来地质聚合物固化土的研究进展。首先介绍了地质聚合物固化土的反应机理;其次详述了不同因素对地质聚合物固化土无侧限抗压强度和抗剪强度等力学性能的影响研究;然后讨论了地质聚合物固化土在冻融循环、干湿循环以及化学离子侵蚀等作用下的耐久性;最后对地质聚合物固化土技术未来发展方向进行了展望。

    Abstract:

    Geopolymer, as a new soil solidification agent, is a kind of green inorganic cementitious material formed by aluminosilicate-rich minerals as precursors under the action of alkali activators. It is equipped with the advantages of good mechanical properties, excellent durability, low carbon and environmental friendly, etc. It can effectively overcome the disadvantages of high energy consumption, high pollution and poor durability of traditional soil solidification agent such as cement or lime, and is generally considered as an ideal substitute for traditional soil solidification agent by scholars at home and abroad. In order to clarify the solidification mechanism and reinforcement effect of geopolymers on soil, the research progress of geopolymer solidified soil in recent years is reviewed in this paper. Firstly, the reaction mechanism of geopolymer solidified soil is introduced; secondly, the influence of different factors on the mechanical properties such as unconfined compressive strength and shear strength of geopolymer solidified soil is described in detail; then the durability of geopolymer solidified soil under freeze-thaw cycle, dry-wet cycle and chemical ion erosion is discussed; finally, the future development direction of geopolymer solidified soil technology is prospected.

    参考文献
    [1] 龚晓南. 地基处理技术及发展展望[M]. 北京: 中国建筑工业出版社, 2014.ONG X N. Advances of ground improvement Technologies[M]. Beijing: China Architecture & Building Press, 2014.
    [2] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(01): 96-115.IU H L, ZHAO M H. Research progress on foundation treatment [J]. China Civil Engineering Journal, 2016, 49(01): 96-115.
    [3] 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(03): 1-49.collab>A Review of Research on Roadbed Engineering in China·2021[J]. China Journal of Highway and Transport·2021[J], 2021, 34(03): 1-49.
    [4] 师旭超, 孙运德, 士贺飞. 长期反复荷载作用下软黏土地基的变形特性[J]. 土木与环境工程学报(中英文), 2020, 42(02): 23-29.HI X C, SUN Y D, SHI H F. Deformation Characteristics of Soft clay Foundation under Long-term Repeated Loading. Journal of Civil and Environmental Engineering, 2020, 42(02): 23-29.
    [5] SIDDIQUE R, KHAN M I. Supplementary cementing materials[M]. Springer Science & BusinessMedia, 2011.
    [6] SAINI G, VATTIPALLI U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica[J]. Case Studies in Construction Materials, 2020, 12: e00352.
    [7] BOATENG A A. Chapter 12[J]. Rotary Kiln Environmental Applications, Rotary Kilns, 2016: 231-264.
    [8] 俞家人, 陈永辉, 陈庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(02): 364-371.U J R, CHEN Y H, CHEN G, et al. Mechanical characteristics and mechanism analysis of geopolymer cured soft clay [J]. Journal of building materials, 2020, 23(02): 364-371.
    [9] 刘汉龙. 绿色地基处理技术探讨[J]. 土木工程学报, 2018, 51(07): 121-128.iu H L. Discussion on green foundation treatment technology [J]. China Civil Engineering Journal, 2018, 51(07): 121-128.
    [10] 赵人达, 成正清, 文甜, 等. 早龄期低钙粉煤灰基地聚物混凝土拉伸徐变特性[J]. 土木与环境工程学报(中英文), 2019, 41(06): 111-117.HAO R D, CHENG Z Q, WEN T, et al. Tensile Creep Characteristics of Early age Low Calcium Fly ash Base Polymer Concrete. Journal of Civil and Environmental Engineering, 2019, 41(06): 111-117.
    [11] BAI T, SONG Z, WANG H, et al. Performance evaluation of metakaolin geopolymer modified by different solid wastes[J]. Journal of Cleaner Production, 2019, 226: 114-121.
    [12] LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584.
    [13] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and building materials, 2013, 47: 1468-1478.
    [14] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Compressibility and strength development of geopolymer stabilized columns cured under stress[J]. Soils and Foundations, 2020, 60(5): 1241-1250.
    [15] PALOMO A, BLANCO-VARELA M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete research, 1999, 29(7): 997-1004.
    [16] CHENG T W, CHIU J P. Fire-resistant geopolymer produced by granulated blast furnace slag[J]. Minerals engineering, 2003, 16(3): 205-210.
    [17] WEN N N, ZHAO Y D, YU Z Y, et al. A sludge and modified rice husk ash-based geopolymer: synthesis and characterization analysis[J]. Journal of Cleaner Production, 2019, 226: 805-814.
    [18] AMER A A, EL-HOSENY S. Properties and performance of metakaolin pozzolanic cement pastes[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(1): 33-44.
    [19] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of thermal analysis, 1989, 35(2): 429-441.
    [20] 余春松, 张玲玲, 郑大伟, 等. 固废基地质聚合物的研究及其应用进展[J]. 中国科学:技术科学, 2022, 52(04): 529-546.U C S, ZHANG L L, ZHENG D W, et al. Research and application progress of solid waste-based geopolymers [J]. Science in China: Technological Sciences, 2022, 52(04): 529-546.
    [21] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and concrete research, 2011, 41(12): 1244-1256.
    [22] 王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13):5-14.ANG A G, WANG X Y, SUN D S, et al. Research progress on coagulation and hardening of geopolymers and their adjustment technology [J]. Materials Review, 2021, 35(13): 5-14.
    [23] KAJA A M, LAZARO A, YU Q L. Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions[J]. Construction and Building Materials, 2018, 189: 1113-1123.
    [24] YAO J L, QIU H J, HE H, et al. Application of a Soft Soil Stabilized by Composite Geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018.
    [25] XIANG J C, LIU L P, HE Y, et al. Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water[J]. Cement and Concrete Composites, 2019, 99: 140-150.
    [26] LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100: 214-226.
    [27] WANG Y S, ALREFAEI Y, DAI J G. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer[J]. Cement and Concrete Research, 2020, 127: 105932.
    [28] YU J R, CHEN Y H, CHEN G, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization[J]. Engineering Geology, 2020, 264: 105316.
    [29] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied clay science, 2016, 127: 134-142.
    [30] WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement[J]. Cement and Concrete Research, 1995, 25(3): 561-571.
    [31] PROVIS J L, YONG C Z, DUXSON P, et al. Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336(1-3): 57-63.
    [32] MOZUMDER R A, LASKAR A I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network[J]. Computers and Geotechnics, 2015, 69: 291-300.
    [33] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation[J]. Acta Geotechnica, 2013, 8(4): 395-405.
    [34] 吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(03): 647-655.U J, ZHENG X Y, YANG A W, et al. Experimental Study on compressive strength of Slag-Fly ash Base Polymer Solidified silty clay [J]. Rock and Soil Mechanics, 2021, 42(03): 647-655.
    [35] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: A cement for the future[J]. Cement and concrete research, 1999, 29(8): 1323-1329.
    [36] 王璐瑶, 谢潇. 浅谈粉煤灰基地质聚合物的发展进程及应用[J]. 科技与创新, 2019,(09): 154-155.ANG L Y, XIE X. Discussion on development process and application of fly ash base gopolymer [J]. Science Technology Innovation, 2019, (09): 154-155.
    [37] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilisation with alkaline activation[J]. Construction and Building Materials, 2012, 29: 167-174.
    [38] KHADKA S D, JAYAWICKRAMA P W, SENADHEERA S. Strength and shrink/swell behavior of highly plastic clay treated with geopolymer[J]. Transportation Research Record, 2018, 2672(52): 174- 184.
    [39] ODEH N A, AL-RKABY A H J. Strength, Durability, and Microstructures characterization of sustainable geopolymer improved clayey soil[J]. Case Studies in Construction Materials, 2022: e00988.
    [40] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing[J]. Soils and Foundations, 2016, 56(6): 1021-1034.
    [41] COLLINS F, SANJAYAN J G. Microcracking and strength development of alkali activated slag concrete[J]. Cement and Concrete Composites, 2001, 23(4-5): 345-352.
    [42] CHOWDARY B, RAMANAMURTY V, PILLAI R J. Fiber reinforced geopolymer treated soft clay–An innovative and sustainable alternative for soil stabilization[J]. Materials Today: Proceedings, 2020, 32: 777-781.
    [43] WANG S N, XUE Q P, MA W, et al. Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil[J]. Construction and Building Materials, 2021, 272: 121914.
    [44] BILONDI M P, TOUFIGH M M, TOUFIGH V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils[J]. Construction and building Materials, 2018, 170: 302-313.
    [45] 周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(08): 2089-2098.HOU H Y, WANG X S, HU X X, et al. Influence factors and mechanism of strength growth of geopolymer solidified silt [J]. Rock and Soil Mechanics, 2021, 42(08): 2089-2098.
    [46] ARULRAJAH A, YAGHOUBI M, DISFANI M M, et al. Evaluation of fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing[J]. Soils and Foundations, 2018, 58(6): 1358-1370.
    [47] 朱月, 陈锐. 碱激发材料加固软土强度的影响因素试验研究[J]. 公路, 2020, 65(03): 23-28.HU Y, CHEN R. Experimental study on influencing factors of strength of soft soil reinforced by alkali activated materials [J]. Highway, 2020, 65 (03) : 23-28.
    [48] DAVIDOVITS J. Geopolymer cement[J]. A review. Geopolymer Institute, Technical papers, 2013, 21: 1-11.
    [49] LE V Q, DO M Q, HOANG M D, et al. Effect of Alkaline Activators to Engineering Properties of Geopolymer- Based Materials Synthesized from Red Mud[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2018, 777: 508-512.
    [50] POURAKBAR S, HUAT B B K, ASADI A, et al. Model study of alkali-activated waste binder for soil stabilization[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(4): 1-12.
    [51] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil[J]. Soils and foundations, 2018, 58(3): 716-728.
    [52] PHUMMIPHAN I, HORPIBULSUK S, SUKMAK P, et al. Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer[J]. Road Materials and Pavement Design, 2016, 17(4): 877-891.
    [53] PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of hazardous materials, 2018, 341: 257-267.
    [54] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(S1): 3197-3205.ANG D X, WANG H W, ZOU W L, et al. Micromechanism of alkali activated fly ash solidified sludge [J]. Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3197-3205.
    [55] LV Q F, JIANG L S, MA B, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74.
    [56] 孙秀丽, 童琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报, 2017, 57(06): 622-628.UN X L, TONG Q, LIU W H, et al. Mechanical properties and microstructure of dredged silt modified by alkali activated fly ash and ore powder [J]. Journal of Dalian University of Technology, 2017, 57(06): 622-628.
    [57] 陈锐, 郝若愚, 李笛, 等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J/OL]. 工程地质学报: 1-11[2022-03-16].HEN R, HAO R Y, LI D, et al. Study on road Performance and freeze-thaw resistance of alkali activated materials curing low liquid limit powder clay [J/OL]. Journal of Engineering Geology: 1-11[2022-03-16].
    [58] CHIMOYE W. Strength of soft bangkok clay improved by geopolymer from palm fuel ash[J]. International Journal of Engineering and Technology Research, 2014, 2(5): 1-10.
    [59] 吴燕开, 胡晓士, 胡锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194.U Y K, HU X S, HU R, et al. Experimental study of steel slag powder excited by caustic soda in silty soil. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194.
    [60] CRISTELO N, GLENDINNING S, MIRANDA T, et al. Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction[J]. Construction and building materials, 2012, 36: 727-735.
    [61] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied clay science, 2016, 127: 134-142
    [62] YIP C K, LUKEY G C, PROVIS J L, et al. Effect of calcium silicate sources on geopolymerisation[J]. Cement and Concrete Research, 2008, 38(4): 554-564.
    [63] LI C, SUN H H, LI L T. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and concrete research, 2010, 40(9): 1341-1349.
    [64] VAN DEVENTER J S J, PROVIS J L, DUXSON P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of hazardous materials, 2007, 139(3): 506-513.
    [65] PHUMMIPHAN I, HORPIBULSUK S, PHOO-NGERNKHAM T, et al. Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016195.
    [66] LORI I S, TOUFIGH M M, TOUFIGH V. Improvement of poorly graded sandy soil by using copper mine tailing dam sediments-based geopolymer and silica fume[J]. Construction and Building Materials, 2021, 281: 122591.
    [67] GHADIR P, ZAMANIAN M, MAHBUBI-MOTLAGH N, et al. Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study[J]. Transportation Geotechnics, 2021, 31: 100639.
    [68] KHASIBI.A., NORSYAHARIATIN., DAUDN., et al. Strength Development and Microstructural Behavior of Soils. Applied Sciences, 2021, 11 (8): 3572.
    [69] AL-RKABY A H J. Evaluating Shear strength of Sand-GGBFS based geopolymer composite material[J]. Acta Polytechnica, 2019, 59(4): 305-311.
    [70] RIOS S, RAMOS C, VIANA DA FONSECA A, et al. Mechanical and durability properties of a soil stabilised with an alkali-activated cement[J]. European Journal of Environmental and Civil Engineering, 2019, 23(2): 245-267.
    [71] RIOS S, CRISTELO N, VIANA DA FONSECA A, et al. Structural performance of alkali-activated soil ash versus soil cement[J]. Journal of Materials in Civil Engineering, 2016, 28(2): 04015125.
    [72] ABDULLAH H H, SHAHIN M A, WALSKE M L. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer incorporated granulated slag[J]. Soils and Foundations, 2019, 59(6): 1906-1920.
    [73] COOP M R, ATKINSON J H. The mechanics of cemented carbonate sands[J]. Geotechnique, 1993, 43(1): 53-67.
    [74] WANG H C, YAO J L, LIN Y, et al. Research of Geopolymer Deal with the Strength of Soft Soil and Microstructure Test[C]//Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference. Springer, Cham, 2018: 204-214.
    [75] 吴燕开, 苗盛瑶, 李鑫, 等. 冻融循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 工程地质学报, 2021, 29(03): 851-861.U Y K, MIAO S Y, LI X, et al. Experimental study on improved expansive soil with steel slag powder cement under freeze-thaw cycle [J]. Journal of Engineering Geology, 2021, 29(03): 851-861.
    [76] 柯睿, 汪洪星, 谈云志, 等. 冻融循环对固化淤泥土力学性质的影响[J]. 长江科学院院报, 2019, 36(08): 136-139+145.E R, WANG H X, TAN Y Z, et al. Effects of freeze-thaw cycles on the mechanical properties of solidified silt soils [J]. Journal of Yangtze River Academy of Sciences, 2019, 36(08): 136-139+145.
    [77] 郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(05): 1282-1287+1294.HENG Y, MA W, BING H. Experimental study on the effect of freeze-thaw cycles on soil structure and analysis of the effect mechanism [J]. Rock and Soil Mechanics, 2015, 36(05): 1282-1287+1294.
    [78] SAHOO S, SINGH S P. Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers[J]. Construction and Building Materials, 2022, 328: 127078.
    [79] SAMANTASINGHAR S, SINGH S P. Strength and Durability of Granular Soil Stabilized with FA-GGBS Geopolymer[J]. Journal of Materials in Civil Engineering, 2021, 33(6): 06021003.
    [80] ALLAHVERDI A, ABADI M M B R, HOSSAIN K M A, et al. Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles[J]. Cold regions science and technology, 2014, 103: 107-114.
    [81] 邵俐, 李佩青, 王彬杰. 冻融循环对碱激发高炉矿渣微粉加固软土强度的影响[J]. 公路交通科技, 2022, 39(01): 40-47.HAO L, LI P Q, WANG B J. Effect of freezing-thawing cycle on strength of soft soil reinforced by alkali activated blast furnace slag powder [J]. Journal of Highway and Transportation Technology, 2022, 39(01): 40-47.
    [82] 吴燕开, 乔晓龙, 李丹丹,等. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(03): 319-329.U Y K, QIAO X L, LI D D, et al. Laboratory test of steel slag powder cement modified expansive soil under wet and dry cycling [J]. Journal of Xi 'an University of Architecture and Technology (Natural Science Edition), 2021, 53(03): 319-329.
    [83] ZHANG R, LONG M, LAN T, et al. Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application[J]. Journal of Central South University, 2020, 27(7): 1965-1980.
    [84] NGO T P, BUI Q B, PHAN V T A, et al. Durability of geopolymer stabilised compacted earth exposed to wetting–drying cycles at different conditions of pH and salt[J]. Construction and Building Materials, 2022, 329: 127168.
    [85] HOY M, RACHAN R, HORPIBULSUK S, et al. Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement–Fly ash geopolymer[J]. Construction and Building Materials, 2017, 144: 624-634.
    [86] LE H B, BUI Q B, TANG Luping. Geopolymer recycled aggregate concrete: from experiments to empirical models[J]. Materials, 2021, 14(5): 1180.
    [87] RIVERA J F, OROBIO A, CRISTELO N, et al. Fly ash-based geopolymer as A4 type soil stabiliser[J]. Transportation Geotechnics, 2020, 25: 100409.
    [88] NOOLU V, RAO G M, CHAVALI R V P. Strength and durability characteristics of GGBS geopolymer stabilized black cotton soil[J]. Materials Today: Proceedings, 2021, 43: 2373-2376.
    [89] JIANG N J, DU Y J, LIU K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack[J]. Applied Clay Science, 2018, 161: 70-75.
    [90] ROLLINGS R S, BURKES J P, ROLLINGS M P. Sulfate attack on cement-stabilized sand[J]. Journal of geotechnical and geoenvironmental engineering, 1999, 125(5): 364-372.
    [91] DŽUNUZOVIĆ N, KOMLJENOVIĆ M, NIKOLIĆ V, et al. External sulfate attack on alkali-activated fly ash-blast furnace slag composite[J]. Construction and Building Materials, 2017, 157: 737-747.
    [92] QIAO C Y, SURANENI P, WEISS J. Damage in cement pastes exposed to NaCl solutions[J]. Construction and Building Materials, 2018, 171: 120-127.
    [93] LI X, RAO F, SONG S X, et al. Deterioration in the microstructure of metakaolin-based geopolymers in marine environment[J]. Journal of Materials Research and Technology, 2019, 8(3): 2747-2752.
    [94] TEMUUJIN J, MINJIGMAA A, LEE M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cement and concrete composites, 2011, 33(10): 1086-1091.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:665
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-02
  • 最后修改日期:2022-06-09
  • 录用日期:2022-08-09
文章二维码