基于M-Unet的混凝土裂缝实时分割算法
CSTR:
作者单位:

1.西南石油大学;2.西南交通大学

基金项目:

国家自然科学(52078442),四川省科技计划项目(2021YJ0038)。


Real-time segmentation algorithm of concrete cracks based on M-Unet
Author:
Affiliation:

1.Southwest Petroleum University;2.Southwest Jiaotong University

Fund Project:

Project of National Natural Science Foundation of China(52078442), Project of Science and Technology Sichuan Program of Sichuan Province(2021YJ0038).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对主流深度学习裂缝分割算法消耗大量计算资源、以及传统图像处理方法检测精度低、丢失裂缝特征等问题。为了实现对混凝土裂缝的实时检测和在像素级水平上分割裂缝,提出一种基于轻量级卷积神经络M-Unet的裂缝语义分割模型,首先对MobileNet_V2轻量网络进行改进,修剪其网络结构并优化激活函数,再将改进的MobileNet_V2替换U-Net参数量巨大的编码器部分,以实现模型的轻量化并提升裂缝的分割效果。构建包含5160张裂缝图像的SegCracks数据集对提出方法进行验证,实验结果表明:优化后的M-Unet裂缝分割效果优于U-Net、FCN8和SegNet等主流分割网络和传统图像处理技术,获得的IoU_Score为96.10%,F1_Score为97.99%。与改进前U-Net相比,M-Unet权重文件大小减少了7%,迭代一轮时间和预测时间分别缩短63.3%和68.6%,IoU_Score和F1_Score分别提升了5.79%和3.14%,并在不同开源数据集上的交叉验证效果良好,表明提出的网络具有精度高、鲁棒性好和泛化能力强等优点,以期为混凝土裂缝的实时分割提供新的技术手段。

    Abstract:

    Aiming at the problems of the mainstream deep learning algorithm for crack segmentation consumes a lot of computing resources, and the traditional image processing methods have low detection accuracy and lost crack features. In order to realize the real-time detection of concrete cracks and the segmentation of cracks at the pixel level, a crack semantic segmentation model based on lightweight convolutional neural network M-Unet is proposed. Firstly, the Mobilenet_V2 lightweight network is improved, its network structure is trimmed and the activation function is optimized, and then the encoder part with huge parameters of U-Net is replaced by the improved mobilenet_V2 to realize the lightweight of the model and improve the segmentation effect of cracks. The SegCracks data set containing 5160 crack images is constructed to verify the proposed method. The experimental results show that the crack segmentation effect of the optimized M-Unet is better than the mainstream segmentation networks of U-Net, FCN8 and SegNet and the traditional image processing technology, the obtained IoU_Score is 96.10%, F1_score is 97.99%. Compared with the original U-Net, the weight file size M-Unet is reduced by 7 %, the iteration time and prediction time are reduced by 63.3% and 68.6% respectively, and the IoU_Score and F1_Score are increased by 5.79 % and 3.14 %, respectively, and the cross validation results on different open source data sets are good, which shows that the proposed network has the advantages of high accuracy, good robustness and strong generalization ability, with a view to providing a new technical means for real-time segmentation of concrete cracks.

    参考文献
    [1] LI Y, ZHANG J H, GUAN Z G, et al. Experimental study on the correlation between crack width and crack depth of rc beams[J]. Materials, 2021, 14(20): 5950
    [2] 舒江鹏, 李俊, 马亥波, 等. 基于特征金字塔网络的超大尺寸图像裂缝识别检测方法[J]. 土木与环境工程学报(中英文), 2022, 44(03): 29-36.HU J P, LI J, MA H B, et al. Crack detection method based on feature pyramid network for super large-scale images [J]. Journal of Civil and Environmental Engineering, 2022, 44(03): 29-36.
    [3] DONG J X, LIU J H, WANG N N, et al. Intelligent segmentation and measurement model for asphalt road cracks based on modified mask R-CNN algorithm[J]. Computer Modeling in Engineering & Sciences, 2021, 128(2): 541-564
    [4] ZHANG L X, SHEN J K, ZHU B J. A research on an improved Unet-based concrete crack detection algorithm[J]. Structural Health Monitoring, 2020, 20(4): 1864-1879
    [5] ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: A review.[J]. IEEE transactions on neural networks and learning systems, 2019, 30(11): 3212-3232
    [6] CHA Y J, CHOI W, SUH G , et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.
    [7] 邓晖, 胡文魁, 付志旭. 基于全卷积神经网络的桥梁裂缝分割和测量方法[J/OL]. 工业建筑: 1-14[2021-11-26].ENG H, HU W K, FU Z X. Bridge crack segmentation and measurement method based on full convolutional neural network[J/OL]. Industrial Construction: 1-14[2021-11-26].
    [8] 李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(09): 1727-1742.I L F, MA W F, LI L, et al. Research on detection algorithm for bridge cracks based on deep learning [J]. Acta Automatica Sinica, 2019, 45(09): 1727-1742.
    [9] LIU Z Q, CAO Y W, WANG Y Z, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104(AUG): 129-139.
    [10] REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234(C).
    [11] XUE Y D, LI Y C. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(8): 638-654.
    [12] 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(05): 859-867.ANG S, WU X, ZHANG Y H, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(05): 859-867.
    [13] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018: 4510-4520.
    [14] 朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(04): 35-42.HU S Y, DU J C, LI Y S, et al. Method for bridge crack detection based on the U-Net convolution network [J]. Journal of Xidian University, 2019, 46(04): 35-42.
    [15] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
    [16] YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
    [17] EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? A systematic approach[C]. 2017 International Joint Conference on Neural Networks (IJCNN). New York: IEEE Press, 2017: 2039-2047
    [18] SATTAR D, THOMAS R J, MARC M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018, 186: 1031-1045
    [19] CHEN X L, LI J, HUANG S W, et al. An Automatic Concrete Crack-Detection Method Fusing Point Clouds and Images Based on Improved Otsu’s Algorithm[J]. Sensors, 2021, 21(5): 1581
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:681
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-04
  • 最后修改日期:2022-06-10
  • 录用日期:2022-06-22
文章二维码