基于轻量化卷积神经网络的桥梁斜拉索PE护套损伤识别方法研究
CSTR:
作者:
作者单位:

1.上海交通大学 船舶海洋与建筑工程学院;2.哈尔滨工业大学 土木工程学院

中图分类号:

TU997 ?

基金项目:

国家重点研发计划(编号:2021YFF0501003)


Research on damage identification method of PE sheath of bridge stay cable based on lightweight convolutional neural network
Author:
Affiliation:

1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University;2.School of Civil Engineering, Harbin Institute of Technology

Fund Project:

National Key Research and Development Program Funding (No. 2021YFF0501003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来深度神经网络和计算机视觉技术在结构健康监测中发挥了越来越重要的作用。本文通过无人机航拍采集的桥梁斜拉索损伤图像数据研究深度学习技术进行斜拉索PE护套损伤识别。为实现在较低运算能力设备上对大跨度桥梁斜拉索表面局部损伤的智能快速识别,解决在当前研究中传统深度卷积神经网络的运算效率相对较低、模型参数规模较大的问题,本文提出轻量化处理的区域推荐型卷积神经网络模型。首先,介绍了区域推荐网络与其轻量化改进方法的理论基础,分析了轻量化模型处理的必要性,其能够在保证识别精度的前提下降低模型训练与预测的设备性能需求,达到节约计算资源与时间的目的;其次,通过数据增广多手段解决损伤样本数据量不足的问题,设置对比试验,统计分析结果,验证了轻量化神经网络模型的优越性。结果表明,轻量化网络在少量牺牲识别准确度的前提下,能够在较大程度上实现对模型复杂度与计算量的改进,在工程应用中能够有效拓展神经网络的实用性。

    Abstract:

    In recent years, deep neural network and computer vision techniques have played an increasingly important role in structural health monitoring. In this paper, deep learning technology is used to identify the PE sheath damage through the image data of bridge stay cable damage collected by UAV. This paper aims to realize the intelligent and rapid identification of local damage on the surface of stay cables of long-span bridges on devices with low computational ability, and solve the problems of relatively low computational efficiency and large scale of model parameters in the current research of traditional deep convolution neural network. A lightweight region proposal convolution neural network model is proposed. Firstly, the theoretical basis of region proposal network and its lightweight improvement method is introduced, and the necessity of lightweight model processing is analyzed. It reduces the performance requirements of devices for model training and prediction under the premise of ensuring identification accuracy, achieving the purpose of saving computational resources and time. Secondly, the problem of insufficient data of damage samples is solved by multiple means of data augmentation. The contrast experiment and the analysis of statistical results verify the superiority of the lightweight neural network model. The results show that the lightweight network can improve the complexity and quantity of calculation of the model to a large extent under the premise of a small sacrifice of recognition accuracy. It effectively expands the practicability of the neural network in engineering applications.

    参考文献
    [1] BAO Yuequan, CHEN Zhicheng, WEI Shiyin,et al. The state of the art of data science and engineering in structural health monitoring[J]. Engineering, 2019, 5(2): 234-242.
    [2] AZIMI M, ESLAMLOU A D, PEKCAN G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review [J]. Sensors, 2020, 20(10): 2778.
    [3] SUN Limin, SHANG Zhiqiang, XIA Ye, et al. Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection [J]. Journal of Structural Engineering, 2020, 146(5): 04020073.
    [4] 刘程程. 机器视觉在工程检测领域的应用研究[D].大连理工大学,2020.IU Chengcheng. Application Research of Machine Vision in the Field of Engineering Inspection[D]. Dalian University of Technology, 2020.
    [5] 许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012.U Ke. Study of Convolutional Neural Network Applied on Image Recognition[D]. Zhejiang University, 2012.
    [6] 刘洪利. 基于深度学习的轻量化目标检测算法研究[D].北京交通大学,2020.IU Hongli. Lightweight Object Detection Algorithm Based on Deep Learning[D]. Beijing Jiaotong University, 2020.
    [7] 曾世钦,唐朝,陈可. 基于深度学习和无线传输的桥梁裂缝图像识别系统[J]. 建材世界,2019,40(2):78-82,98. DOI:10.3963/j.issn.1674-6066.2019.02.021.ENG Shiqin, TANG Chao, CHEN Ke. Construction of Bridge Crack Image Recognition System Based onDeep Learning and Wireless Transmission[J]. The World of Building Materials ,2019,40(2):78-82,98. DOI:10.3963/j.issn.1674-6066.2019.02.021.
    [8] 陶晓力,武建,杨坤. 基于无人机视觉的桥梁裂缝检测[J]. 计算机技术与发展,2018,28(3):174-177. DOI:10.3969/j.issn.1673-629X.2018.03.037.AO Xiaoli, WU Jian, YANG Kun. Bridge Crack Detection Based on Unmanned Aerial Vehicle Vision[J]. Computer Technology and Development,2018,28(3):174-177. DOI:10.3969/j.issn.1673-629X.2018.03.037.
    [9] 陈辉东,丁小燕,刘艳霞.基于深度学习的目标检测算法综述[J].北京联合大学学报,2021,35(03):39-46.HEN Huidong, DING Xiaoyan, LIU Yanxia. Review of Target Detection Algorithm Based on Deep Learning[J]. Journal of Beijing Union University,2021,35(03):39-46.
    [10] Redmon J,Divvala S,Girshick R,et al.You only look once:unified,real-time object detection[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2016:779-788.
    [11] 李会军,王瀚洋,李杨,叶宾.一种基于视觉特征区域建议的目标检测方法[J].控制与决策,2020,35(06):1323-1328.DOI:10.13195/j.kzyjc.2018.1299.I Huijun, WANG Hanyang, LI yang, et al. An object detector based on visual feature region proposal[J]. Control and Decision, 2020,35(06):1323-1328.DOI:10.13195/j.kzyjc.2018.1299.
    [12] 何丹妮. 基于深度学习的多车辆检测及跟踪算法研究[D].大连理工大学, 2019. DOI: 10. 26991/ d.cnki.gdllu. 2019. 002385.E Danni. Research on Multi-Vehicle Detection and Tracking Algorithm Based on Deep Learning[D]. Dalian University of Technology, 2019. DOI: 10.26991/ d. cnki. gdllu. 2019. 002385.
    [13] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
    [14] 石杰,周亚丽,张奇志.基于改进Mask RCNN和Kinect的服务机器人物品识别系统[J].仪器仪表学报, 2019, 40(04): 216-228. DOI: 10.19650/j.cnki.cjsi.J1804573.HI Jie, ZHOU Yali, ZHANG Qizhi. Service robot item recognition system based on improved Mask RCNN and Kinect[J]. Chinese Journal of Scientific Instrument, 2019, 40(04): 216-228. DOI: 10.19650/j.cnki.cjsi.J1804573.
    [15] 薛明. 基于稀疏表示的在线目标跟踪研究[D].上海交通大学,2014.UE Ming. Research on Online Object tracking based on Sparse Representation[D]. Shanghai Jiao Tong University, 2014.
    [16] GirshickRoss. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580-587.
    [17] GirshickRoss. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448.
    [18] RenShaoqing. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Advances in Neural Information Processing Systems 28 (NIPS 2015) , 2015.
    [19] 徐阳. 基于计算机视觉的桥梁结构局部损伤识别方法研究. 哈尔滨:哈尔滨工业大学,2019: 1-15XU Yang. Structural Local Damage Detection Methods for Bridges Based on Computer Vision Techniques. Harbin: Harbin Institute of Technology, 2019:1-15.
    [20] 林景栋,吴欣怡,柴毅,尹宏鹏.卷积神经网络结构优化综述[J].自动化学报, 2020, 46(01): 24-37. DOI: 10.16383/ j.aas.c180275.IN Jing-Dong, WU Xin-Yi, CHAI Yi, et al. Structure Optimization of Convolutional Neural Networks: A Survey. Acta Automatica Sinica, 2020, 46(01): 24-37. DOI: 10.16383/ j.aas.c180275.
    [21] Denil M, Shakibi B, Dinh L, Ranzato M, de Freitas N. Predicting parameters in deep learning. In: Proceedings of the26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc.,2013.2148-2156.
    [22] 杨玉敏,廖育荣,林存宝,倪淑燕,吴止锾.轻量化卷积神经网络目标检测算法综述[J].舰船电子工程,2021,41(04):31-36.ANG Yumin, LIAO Yurong, LIN Cunbao. A Survey of Object Detection Algorithms for Lightweight Convolutional Neural Networks[J]. Ship Electronic Engi neering, 2021,41(04):31-36.
    [23] HowardAndrew G.. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Google Inc, 2017.
    [24] SandlerMark. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510-4520.
    [25] HeKaiming. Identity Mappings in Deep Residual Networks. European conference on computer vision, 2016.
    [26] 梁亚斌,蔡思佳,冯谦,王浩.基于无人机航拍的武汉天兴洲长江大桥桥索PE外观检测技术[J].大地测量与地球动力学, 2019, 39(11): 1207-1210.DOI:10.14075/j.jgg.2019.11.021.IANG Yabin, CAI Sijia, FENG Qian, et al. Cable PE Appearance Inspection in the Tianxingzhou River Bridge Using Unmanned Aerial Vehicle Based Aerial Photo Technique. [J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1207-1210. DOI: 10.14075/ j.jgg. 2019.11.021.
    [27] 李放. 基于深度卷积神经网络的高分辨率图像目标检测研究[D].辽宁工程技术大学,2019.I Fang. Research on Object Detection of High Resolution Images Based on Convolution Neural Network[D]. Liaoning Technical University, 2019.
    [28] 关健. 斜拉索风雨激振理论模型及参数化分析[D].天津大学,2018.UAN Jian. Theoretical Models and Parametric Analysis of Rain-Wind Induced Vibration of Stay Cable[D].Tianjin University, 2018.
    [29] 要军霞. 斜拉索的防护[J]. 山西建筑,2008,34(12):300-301. DOI:10.3969/j.issn.1009-6825.2008.12.189.AO Junxia. Protection of Stayed Cables[J]. Shanxi Architecture ,2008,34(12):300-301. DOI:10.3969/j.issn.1009-6825.2008.12.189.
    [30] 刘庆宽,王晓江,卢照亮,等. 螺旋线对斜拉桥斜拉索横风向气动力和稳定性的影响[J]. 振动与冲击,2019,38(6):108-113. DOI:10.13465/j.cnki.jvs.2019.06.016.IU Qingkuan, WANG Xiaojiang, LU Zhaoliang, et al. Effect of helical line on the aerodynamic force and stability of stay cables[J]. Journal of Vibration and Shock, 2019,38(6):108-113. DOI:10.13465/j.cnki.jvs.2019.06.016.
    [31] GhiasiGolnaz, Yin Cui. Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation, 2020.
    [32] ZhangHongyi. Mix up: Beyond Empirical Risk Minimization. The International Conference on Learning Representations (ICLR), 2018.
    [33] 刘平平. 机器视觉系统中的图像噪声处理算法研究[D].华中科技大学,2011.IU Pingping. Research on Image Denoising Algorithm in Machine . Vision System[D]. Huazhong University of Science and Technology, 2011.
    [34] 朱劲松,李欢,王世芳.基于卷积神经网络和迁移学习的钢桥病害识别[J].长安大学学报(自然科学版), 2021, 41(03): 52-63. DOI: 10.19721/ j.cnki. 1671-8879.2021.03.006.collab>ZHU Jin-song LI Huan WANG Shi-fang. Defect recognition for steel bridge based on convolutional neural network and transfer learning[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(03): 52-63. DOI: 10.19721/ j.cnki. 1671-8879.2021.03.006.
    [35] 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(08):10-25.U Degang, WANG Lu, LI Fan. Review of Typical Object Detection Algorithms for Deep Learning[J]. Computer Engineering and Applications,2021,57(08):10-25.
    [36] 徐子同. 基于改进的Faster RCNN交通目标检测算法研究[D].长安大学,2021. DOI: 10.26976/ d.cnki.gchau. 2021.000610.U Zitong. A Study on Object Detection for Traffic Scene Based on Improved Faster RCNN[D]. Chang’an University, 2021. DOI: 10.26976/d.cnki.gchau.2021.000610.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:255
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-07-07
  • 最后修改日期:2022-09-17
  • 录用日期:2022-10-30
文章二维码