基于小波的神经网络盾构泥水分离系统参数预测
CSTR:
作者:
作者单位:

1.北京石油化工学院机械工程学院;2.中铁隧道集团二处有限公司

中图分类号:

U231.3; U455

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Parameter prediction of shield slurry separation system of neural network based on wavelet
Author:
Affiliation:

1.Department of Mechanical Engineering,Beijing Institute of Petrochemical Technology;2.The nd Engineering Co Ltd Of China Railway Tunnel Group

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动现象,影响施工安全和掘进效率。泥水分离系统参数提取处理困难,现阶段针对盾构泥水分离系统预测的研究鲜少。依托京沈客专望京隧道,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技术,解决了盾构掘进与泥浆处理的矛盾;采集盾构掘进参数(掘进速度、刀盘转速、总推进力、贯入度)和泥水分离参数(进排浆量、比重、粘度),通过Cook距离离群检测和小波阈值去噪处理提升数据质量;以双旋流分离比重比值、粘度比值等12个参数为输入,排浆量、排浆比重和排浆粘度为输出,建立了BP神经网络泥水分离系统参数的预测模型,并选取3个不同地层环段进行预测对比分析。预测结果表明:预测平均绝对误差均在5%以内,该预测模型在复合地层下仍具有较高的准确性,可为同类型盾构施工在风险预测和参数选取提供参考。

    Abstract:

    When the slurry shield passes through the composite formation, the parameters of the shield tunneling and slurry separation system often fluctuate greatly, influencing construction safety and tunnelling efficiency. It is difficult to extract and deal with the parameters of slurry separation system, there are few studies on the prediction of shield slurry separation system. Base on the Wangjing Tunnel, the coordinated control technology solid-liquid separation of screening, two-stage cyclone, and centrifugal / pressure filtration are adopted according to the stratum conditions, solving the contradiction between shield tunneling and slurry treatment. Collect shield tunneling parameters (tunnelling speed, cutter head speed, total propulsion force, penetration) and slurryr separation parameters (feed and discharge volume, specific gravity, viscosity). Improve data quality through Cook distance outlier detection and wavelet threshold denoising, . The 12 parameters are input specific gravity ratio and viscosity ratio of two-stage cyclone separation, and the output parameters are discharge volume, discharge specific gravity and discharge viscosity,BP neural network was established to predict parameters of the slurry separation system, three different formation rings were selected for prediction and analysis. The prediction results show that the average prediction errors are all within 5%, they still have high accuracy under the composite formation, which provides reference in risk prediction and parameter selection.

    参考文献
    [1] 苏清贵, 翟志国, 邓亨义. 泥水盾构施工废弃泥浆的环保处理技术[J]. 隧道建设, 2012, 32(S2): 222-226.SU Q G, ZHAI Z G, DENG H Y. Treatments of waste slurry shield machine[J]. Tunnel Construction, 2012, 32(S2): 222-226. (in Chinese)
    [2] 周玉标, 曾瑞华. 复杂地层泥水盾构泥浆及渣土综合处理施工技术[J]. 建筑机械化, 2021, 42(08): 33-36.ZHOU Y B, ZENG R H. Construction technology of slurry shield slurry and slag-soil comprehensive treatment in complex strata[J]. Construction Mechanization, 2021, 42(08): 33-36. (in Chinese)
    [3] 廖晨. 超大直径泥水盾构穿越施工对周边环境的影响研究[D]. 广州大学, 2020.LIAO C. Research of the environmental influence induced by adjacent tunneling with a large-diameter slurry TBM[D]. Guangzhou University, 2020. (in Chinese)
    [4] 罗庆中, 李娜, 贾光智. 中国铁路发展战略研究[J]. 科技导报, 2020, 38(09): 26-31.LUO Q Z, LI N, JIA G Z. Study on China''s railway development strategy[J]. Science Technology Review, 2020, 38(09): 26-31. (in Chinese)
    [5] 赵海涛. 京张高铁大直径泥水盾构施工泥浆环保处理措施研究[J]. 铁道勘察, 2020, 46(01): 79-81+94.ZHAO H T. Study on mud environmental protection treatment measures for construction of large diameter slurry shield in Beijing-Zhangjiakou high-speed railway[J]. Railway Investigation and Surveying, 2020, 46(01): 79-81+94. (in Chinese)
    [6] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述.2022[J]. 中国公路学报, 2022, 35(04): 1-40.Editorial department of China journal of highway and transport. Review on China''s traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35(04): 1-40. (in Chinese)
    [7] 许维青, 李义华, 翟志国, 等. 一种泥水盾构机在细颗粒地层中施工的泥浆多级分离方法: 201710668914.6[P]. 2020.XU W Q, LI Y H, ZHAI Z G, et al. A slurry multistage separation method for slurry shield construction in fine particle stratum: 201710668914.6[P]. 2020. (in Chinese)
    [8] 沈翔, 袁大军, 吴俊, 等. 复杂地层条件下盾构掘进参数分析及预测[J]. 现代隧道技术, 2020, 57(05): 160-166.SHEN X, YUAN D J, WU J, et al. Analysis and prediction of driving parameters of shield tunnelling in complex strata[J]. Modern Tunnelling Technology, 2020, 57(05): 160-166. (in Chinese)
    [9] 李亚,刘丽平,李柏青,等.基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J].中国电机工程学报, 2016, 36(17): 4543-4552.LI Y, LIU L P, LI B Q, et al. Calculation of line loss rate in transformer district based on improved K-Means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17): 4543-4552. (in Chinese)
    [10] 季玉琦, 谢欢, 史少彧, 等. 基于EWM-AHP-BP神经网络的地区电网电压无功组合评价[J/OL]. 系统仿真学报: 1-9.JI Y Q, XIE H, SHI S Y, et al. Combinational evaluation of voltage and reactive power in regional power grid based on EWM-AHP-BP neural network[J/OL].Journal of System Simulation: 1-9. (in Chinese)
    [11] 徐一帆, 王士民, 何川, 等. 基于BP神经网络的复合地层盾构掘进参数预测[J]. 铁道标准设计: 2022, 66(07): 120-125.XU Y F, WANG S M, HE C, et al. Prediction of driving parameters of shield tunnel in composite strata based on back propagation neural network[J]. Railway Standard Design: 2022, 66(07): 120-125. (in Chinese)
    [12] 孙峻枫, 陈凡, 宋天田, 等. 基于神经网络的双模盾构复合地层掘进参数预测模型[J/OL]. 铁道标准设计: 1-9.SUN J F, CHEN F, SONG T T, et al. Tunneling parameter prediction model of dual-mode shield in composite strata based on neural network[J/OL]. Railway Standard Design: 1-9. (in Chinese)
    [13] 王志坚, 罗舒琪, 王斌会. 基于稳健Cook距离的时间序列异常值诊断[J]. 统计与决策, 2022, 38(03): 40-44.WANG Z J, LUO S Q, WANG B H, Outlier diagnosis of time series based on robust cook distance[J]. Theoretical Investigation, 2022, 38(03): 40-44. (in Chinese)
    [14] 章浙涛. 小波分析理论及其在变形监测中的应用研究[D].中南大学,2014.ZANG Z T. Theory of wavelet analysis and its application in deformation monitoring[D]. Central South University, 2014. (in Chinese)
    [15] 李成仁 ,陆游, 袁豹. 基于Cook距离的协方差函数拟合点优选[J]. 测绘工程, 2014, 23(05): 21-23.LI C G, LU Y, YUAN B. Optimization of fitting points of covariance function based on Cook distance [J]. Surveying and Mapping Engineering, 2014, 23(05): 21-23. (in Chinese)
    [16] 求森. 基于小波分析和神经网络的城市轨道交通客流时间序列预测[D]. 北京交通大学, 2017.QIU S. Prediction of urban rail transit passenger flow time series based on wavelet analysis and neural network[D]. Beijing Jiaotong University, 2017. (in Chinese)
    [17] 李晓峰, 刘光中. 人工神经网络BP算法的改进及其应用[J]. 四川大学学报(工程科学版), 2000. 32(02):105-109.LI X F, LIU G Z. The improvement of BP algorithm and its application[J]. Journal of Sichuan University(Engineering Science Edition), 2000. 32(02):105-109. (in Chinese)
    [18] 李明阳, 杨海涛, 邹高明, 等. 复合地层土压平衡盾构掘进参数模拟分析研究[J]. 隧道建设(中英文), 2012, 32(03): 287-295.LI M Y, YANG H T, ZOU G M, et al. Simulation analysis on boring parameters of EPB shield in complex strata[J]. Tunnel Construction, 2012, 32(03): 287-295. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-20
  • 最后修改日期:2022-11-07
  • 录用日期:2022-11-27
文章二维码