微生物结合碳纤维加固钙质砂的高强度试验研究
CSTR:
作者单位:

河海大学

基金项目:

国家自然科学(51578214)


High strength test study on coral sand reinforced by microbe and fiber
Affiliation:

Hohai University

Fund Project:

National Natural Science Foundation of China (No.51578214)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文研究了微生物诱导碳酸钙(MICP)结合碳纤维固化钙质砂的效果及机理。先通过低轮次注浆试验探究碳纤维对MICP加固钙质砂效果的影响,并确定碳纤维的最佳掺量及长度,然后开展高轮次注浆试验,研究了MICP胶结液无法再注入时的砂柱强度,通过试验结果的对比和扫描电镜等分析,分析了微生物、碳纤维及钙质砂间的作用机理。试验结果表明掺加碳纤维能显著提高微生物加固钙质砂的强度。在低轮次注浆试验中,掺加碳纤维能有效提高碳酸钙的生成量及试样强度,纤维组的碳酸钙生成量比无纤维组对照组提高了15%~34%,试样强度提高了135%~217%。在MICP胶结液无法再灌注入砂柱的情况下,纤维组的强度比无纤维组提高了11%。

    Abstract:

    In this paper, the effect and mechanism of microbially induced calcium carbonate (MICP) combined with carbon fiber for curing calcareous sand were investigated. The effect of carbon fiber on the effect of MICP on the consolidation of calcareous sand was investigated by a low-round grouting test, and the optimal amount and length of carbon fiber was determined. The test results show that the addition of carbon fiber can significantly improve the strength of microbial reinforced calcareous sand. In the low-round grouting test, the addition of carbon fiber can effectively improve the calcium carbonate production and specimen strength, and the calcium carbonate production in the fiber group increased by 15%~34% and the specimen strength increased by 135%~217% compared with the control group without fiber. In the case that the MICP cement could not be re-infused into the sand column, the strength of the fiber group increased by 11% compared with that of the no-fiber group.

    参考文献
    [1] Liu L, Liu H L, Xiao Y, et al. Biocementation of calcareous sand using soluble calcium derived from calcareous sand[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1781-1791.
    [2] Jafarian Y, Javdanian H. Dynamic Properties of Calcareous Sand from the Persian Gulf in Comparison with Siliceous Sands Database[J]. International Journal of Civil Engineering, 2020, 18(2B): 245-249.
    [3] Liu L, Yao X, Ji Z, et al. Cyclic Behavior of Calcareous Sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2021, 9(9).
    [4] Xinzhi W, Ren W, Qinshan M, et al. Study of plate load test of calcareous sand[J]. Rock and Soil Mechanics, 2009, 30(1): 147-151,156.
    [5] Zhu C, Chen H, Meng Q, et al. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836.
    [6] 陈书鹏,谢茜,吴绍渊,刘文白,McManusJohn. 南海岛礁安全预警决策云系统技术架构[C]//.第九届海洋强国战略论坛论文集.,2018:187-193.
    [7] 黄云, 胡其高, 张硕云. 南海海洋环境对岛礁工程结构与设施影响研究[J]. 国防科技, 2018, 39(3): 55-68
    [8] Kuang D, Long Z, Guo R, et al. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles[J]. Marine Georesources & Geotechnology, 2021, 39(5): 543-553.
    [9] Lv Y, Li X, Fan C, et al. Effects of internal pores on the mechanical properties of marine calcareous sand particles[J]. Acta Geotechnica, 2021, 16(10): 3209-3228.
    [10] Coop M R, Sorensen K K, Freitas T B, et al. Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54(3): 157-163.
    [11] Xiao Y, Liu H, Xiao P, et al. Fractal crushing of carbonate sands under impact loading[J]. Geotechnique Letters, 2016, 6(3).
    [12] 刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试 验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-725.
    [13] 兰恒星, 赵晓霞, 伍宇明, 等. 钙质岛礁沉降变形过程分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 6-13.
    [14] 刘汉龙,马国梁,肖杨,丁选明,方祥位.微生物加固岛礁地基现场试验研究[J].地基处理,2019,1(01):26-31.
    [15] 刘汉龙,马国梁,赵常,张娟,何想,肖杨.微生物加固钙质砂的宏微观力学机理[J].土木与环境工程学报(中英文),2020,42(04):205-206.
    [16] 吴创周,楚剑,成亮,何稼.微生物注浆地基处理技术研究进展[J].地基处理,2020,2(03):181-186.
    [17] 刘汉龙,肖鹏,肖杨,楚剑.微生物岩土技术及其应用研究新进展[J].土木与环境工程学报(中英文),2019,41(01):1-14.
    [18] 沈道健,王照宇,梅岭,李飞,邵光辉,刘亮.微生物诱导碳酸钙沉淀加固地基技术研究进展[J].江苏科技大学学报(自然科学版),2017,31(03):390-398.
    [19] 刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(01): 26-31.
    [20] 李捷,方祥位,张伟,申春妮.菌液脲酶活性对珊瑚砂微生物固化效果的影响[J].后勤工程学院学报,2016,32(06):88-91+96.
    [21] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779.
    [22] 朱纪康, 周杨, 王殿龙, 等. 基于微生物诱导矿化的钙质砂加固影响因素[J]. 地质科技情报, 2019, 38(06): 206-211.
    [23] 骆晓伟. 基于微生物诱导碳酸钙沉淀技术(MICP)的砂土固化试验研究[D].南京大学,2018.
    [24] 郑俊杰,宋杨,赖汉江,崔明娟,吴超传.微生物固化纤维加筋砂土抗剪强度试验研究[J].土木与环境工程学报(中英文),2019,41(01):15-21.
    [25] 尹黎阳,唐朝生,张龙.MICP联合纤维加筋改性钙质砂力学特性研究[J].高校地质学报,2021,27(06):679-686.DOI:10.16108/j.issn1006-7493.2021075.
    [26] ChoiSun-Gyu,WangKejin,Jian Chu. Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials,2016,120.
    [27] Li M , Li L , Ogbonnaya U , et al. Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand[J]. Journal of Materials in Civil Engineering, 2016, 28(4):04015166.
    [28] 谢约翰,唐朝生,尹黎阳,吕超,蒋宁俊,施斌.纤维加筋微生物固化砂土的力学特性[J].岩土工程学报,2019,41(04):675-682.
    [29] 马福全,高建新,孙皓,冯文泉.不同纤维长度加筋土无侧限抗压强度分析[J].山西建筑,2016,42(09):66-68.DOI:10.13719/j.cnki.cn14-1279/tu.2016.09.035.
    [30] 林胜强,雷学文,孟庆山,赵涵洋.纤维掺量对MICP固化钙质砂动力特性的影响[J].人民长江,2020,51(07):181-187.
    [31] 包承纲,丁金华.纤维加筋土的研究和工程应用[J].土工基础,2012,26(01):80-83.
    [32] PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Material, 2002, 16(2): 123–131.
    [33] AKBULUT S, ARASAN S, KALKAN E. Modification of clay soils using scrap tire rubber and synthetic fibers[J].Applied Clay Science, 2007, 38(1): 23–32.
    [34] 李昊,唐朝生,尹黎阳,刘博,吕超,王殿龙,泮晓华,王瀚霖,施斌.MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J].岩土工程学报,2021,43(10):1941-1949.
    [35] Yang Zhao,XiaoZhiyang,FanCunbin,ShenWanqing,Qian Wang,LiuPinghui. Comparative mechanical behaviors of four fiber-reinforced sand cemented by microbially induced carbonate precipitation[J]. Bulletin of Engineering Geology and the Environment,2020(prepublish).
    [36] LeiXuewen,LinShengqiang,MengQingshan,LiaoXinghua,XuJianping. Influence of different fiber types on properties of biocemented calcareous sand[J]. Arabian Journal of Geosciences,2020,13(5).
    [37] Spencer C A , Paassen L V , Sass H . Effect of Jute Fibres on the Process of MICP and Properties of Biocemented Sand[J]. Materials, 2020, 13(23).
    [38] Li L , Wen K , Bu C , et al. Enhancement of Bio-Sandy Brick through Discrete Randomly Distributed Fiber[C]// Geo-Congress 2020. 2020.
    [39] Whiffin V S,van Paassen L A and Harkes M P.2007.Microbial Carbonate Precipitation as a Soil Improvement Technique [J].Geomicrobiology Journal,24(5):417-423.
    [40] LeiXuewen,LinShengqiang,MengQingshan,LiaoXinghua,XuJianping. Influence of different fiber types on properties of biocemented calcareous sand[J]. Arabian Journal of Geosciences,2020,13(5).
    [41] 程晓辉,麻强,杨钻,张志超,李萌.微生物灌浆加固液化砂土地基的动力反应研究[J].岩土工程学报,2013,35(08):1486-1495.
    [42] FangXiangwei,Yang Yang,ChenZhe,LiuHanlong,Yang Xiao,ShenChunni. Influence of Fiber Content and Length on Engineering Properties of MICP-Treated Coral Sand[J]. Geomicrobiology Journal,2020,37(6).
    [43] 冷勐.基于MICP技术的高强度珊瑚砂试验研究[D].河海大学,2021.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:131
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-08
  • 最后修改日期:2022-09-25
  • 录用日期:2022-10-30
文章二维码