铝离子絮凝剂的引入对微生物加固砂土试验的影响
CSTR:
作者:
作者单位:

河海大学 岩土力学与堤坝工程教育部重点试验室

基金项目:

国家自然科学基金(51578214);江苏省交通运输厅科技成果转化项目(2021QD07)


Effect of Aluminum ion flocculant on the test of microbial reinforced sand
Author:
Affiliation:

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University

Fund Project:

National Natural Science Foundation of China (No. 51578214); Transformation Program of Scientific and Technological Achievements of Jiangsu Province (2021QD07)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    灌注次数过多制约了微生物诱导碳酸钙沉积(MICP)在实际工程中的应用。为了减少灌注次数、提高胶结效率,本文研究了一种MICP加固强化方法,即在胶结液中添加铝离子絮凝剂,以提高MICP加固速率和加固效果。开展了MICP砂柱试验,探究胶结液中加入不同浓度AlCl3?6H2O对砂柱加固效果的影响。在水溶液试验中,观察不同溶液条件下沉积物生成情况及溶液pH变化。并通过XRD、SEM试验,研究了铝离子絮凝剂对沉积碳酸钙的成分及形态的影响。研究结果表明:与常规方法的对照组比较,胶结液中加入适量铝离子絮凝剂后,灌注3次后砂柱即可形成有强度的固结体,灌注5次后砂柱无侧限抗压强度可达到1.7Mpa,而常规对照组达到相同的强度需要灌注10次。

    Abstract:

    The excessive number of injections of cementing solution required for MICP limits practical engineering application . In order to reduce the number of injections and improve the efficiency of the cementing process, an enhancement method was investigated in this study in which aluminum ion flocculant was added to the cementing solution to enhance the curing rate and effect of MICP. Experiments were carried out on MICP-reinforced sand columns, and the influence of different concentrations of AlCl3?6H2O to the cementing solution on the reinforcement effect was studied. In the aqueous solution test, the changes of precipitation and solution pH under different solution conditions were observed, and the effects of the aluminum ion flocculant on the composition and morphology of the deposited calcium carbonate were investigated by XRD and SEM tests. The results show that, compared with the control group of conventional methods, after adding an appropriate amount of aluminum ion flocculant into the cementing solution, the proposed method resulted in the experimental sand column being reinforced after 3 treatments of the cementing solution. The unconfined compressive strength reaches 1.7Mpa after 5 treatments of the cementing solution, compared to 10 treatments using the conventional method.

    参考文献
    [1] Schneider M, Romer M, Tschudin M, et al. Sustainable cement production-present and future[J]. Cement and Concrete Research, 2011, 41(7): 642-650.
    [2] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究 [J]. 岩土工程学报, 2018, 40(01): 38-45.
    [3] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(08): 1486-1495.
    [4] 邵光辉, 尤婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 129-135.
    [5] 唐朝生, 泮晓华, 吕超, 等. 微生物地质工程技术及其应用[J]. 高校地质学报, 2021, 27(06): 625-654.
    [6] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(01): 191-204.
    [7] 谈叶飞, 郭张军, 陈鸿杰, 等. 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报(自然科学版), 2018, 46(06): 521-526.
    [8] 肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究 [J]. 岩土工程学报, 2021, 43(03): 511-519.
    [9] Chu J, Ivanov V, Stabnikov V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Geotechnique, 2013, 63(10): 871-875.
    [10] Montoya B M, Safavizadeh S, Gabr M A. Enhancement of Coal Ash Compressibility Parameters Using Microbial-Induced Carbonate Precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(5).
    [11] 沈道健, 王照宇, 梅岭, 等. 微生物诱导碳酸钙沉淀加固地基技术研究进展[J]. 江苏科技大学学报(自然科学版), 2017, 31(03): 390-398.
    [12] 刘汉龙, 马国梁, 赵常, 等. 微生物加固钙质砂的宏微观力学机理[J]. 土木与环境工程学报(中英文), 2020, 42(04): 205-206.
    [13] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(01): 1-14.
    [14] 郑俊杰, 宋杨, 赖汉江, 等. 微生物固化纤维加筋砂土抗剪强度试验研究[J]. 土木与环境工程学报(中英文), 2019, 41(01): 15-21.
    [15] 郑俊杰, 吴超传, 宋杨, 等. MICP胶结钙质砂的强度试验及强度离散性研究[J]. 哈尔滨工程大学学报, 2020, 41(02): 250-256.
    [16] Pan X, Chu J, Yang Y, et al. A new biogrouting method for fine to coarse sand[J]. Acta Geotechnica, 2020, 15(1): 1-16.
    [17] Whiffin V S, Van Paassen L A, Harkes M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
    [18] 吴林玉, 缪林昌, 孙潇昊, 等. 植物源脲酶诱导碳酸钙固化砂土试验研究[J]. 岩土工程学报, 2020, 42(04): 714-720.
    [19] 刘志明, 孙益成, 冯清鹏, 等. MICP胶结液中尿素过量的影响研究[J]. 防灾减灾工程学报, 2020, 40(04): 574-580.
    [20] Lee L M, Soon N W, Khun T C, et al. Bio-mediated Soil Improvement under Various Concentrations of Cementation Reagent[C]. International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2012), 2012: 326-329.
    [21] Soon N W, Lee L M, Khun T C, et al. Factors Affecting Improvement in Engineering Properties of Residual Soil through Microbial-Induced Calcite Precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5).
    [22] Al Qabany A, Soga K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63(4): 331-339.
    [23] Velpuri N V P, Yu X, Lee H-I, et al. Influence Factors for Microbial-Induced Calcite Precipitation in Sands[C]. 4th Geo-China International Conference on Sustainable Civil Infrastructures - Innovative Technologies for Severe Weathers and Climate Changes, 2016: 44-52.
    [24] Cunningham A B, Class H, Ebigbo A, et al. Field-scale modeling of microbially induced calcite precipitation[J]. Computational Geosciences, 2019, 23(2): 399-414.
    [25] 李红昌, 查甫生, 康博, 等. 注浆次数对MICP固化尾矿砂效果影响研究[C]. 2020年工业建筑学术交流会, 2020: 217-221.
    [26] Cheng L, Shahin M A, Chu J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2018, 14(3): 615-626.
    [27] Cui M-J, Lai H-J, Hoang T, et al. Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement[J]. Acta Geotechnica, 2021.
    [28] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(04): 675-682.
    [29] Choi S-G, Wang K, Chu J. Properties of biocemented, fiber reinforced sand[J]. Construction and Building Materials, 2016, 120: 623-629.
    [30] 宋平, 方祥位, 李洋洋. 纤维掺量对珊瑚砂微生物固化体力学性能的影响[J]. 兵器装备工程学报, 2017, 38(10): 156-160.
    [31] 杨恒, 陈筠, 白文胜, 等. 活性炭固定微生物固化贵阳红黏土力学特性[J]. 中国岩溶, 2019, 38(04): 619-626.
    [32] 贺越, 赵圣国, 张晓音, 等. 细菌脲酶蛋白结构与催化机制[J]. 生物技术通报, 2020, 36(12): 208-215.
    [33] 裴迪, 刘志明, 胡碧茹, 等. 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47(06): 467-482.
    [34] 李驰, 史冠宇, 武慧敏, 等. 基于脲酶诱导碳酸钙沉积的微生物矿化技术在分散性土改良中应用的试验研究[J]. 岩土力学, 2021, 42(02): 333-342.
    [35] Ramachandran S K, Ramakrishnan V, Bang S S. Remediation of concrete using micro-organisms[J]. Aci Materials Journal, 2001, 98(1): 3-9.
    [36] Whiffin V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
    [37] Takaara T, Sano D, Masago Y, et al. Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment[J]. Water Research, 2010, 44(13): 3781-3786.
    [38] 孙连伟, 韩雪, 王磊, 等. 氯化铝处理含磷废水研究[J]. 环境科学与技术, 2015, 38(S2): 335-338.
    [39] Gao B Y, Chu Y B, Yue Q Y, et al. Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al-13 content[J]. Journal of Environmental Management, 2005, 76(2): 143-147.
    [40] 尚卫东, 刘毅锋, 张娟, 等. 微波辐射下AlCl3.6H2O催化合成β-烯胺酮[J]. 西北大学学报(自然科学版), 2011, 41(02): 253-257.
    [41] Ishizaka T, Kobayashi Y, Kurokawa Y. Alumina coating on quartz glass and nickel substrates using aqueous sol derived from AlCl3 center dot 6H(2)O[J]. Journal of Materials Science, 2003, 38(6): 1239-1242.
    [42] Mortensen B M, Haber M J, Dejong J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
    [43] Al Qabany A, Soga K, Santamarina C. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [44] ASTM (American Society for Testing and Materials) (2013) D2166: Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken.
    [45] Van Paassen L A, Ghose R, Van Der Linden T J M, et al. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [46] 刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
    [47] 谢跃生. 铝盐水解、聚合行为分析[J]. 广西师院学报(自然科学版), 1994(01): 32-37+42.
    [48] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 中国地质大学(北京), 2014.
    [49] Hammes F, Verstraete* W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(1): 3-7.
    [50] 尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(07): 2525-2546.
    [51] 段宇, 徐国宾, 杨德锋, 等. MICP矿化产物中钙离子利用率的影响因素及微观物相分析[J]. 化工进展, 2019, 38(05): 2306-2313.
    [52] Kawasaki N, Ogata F, Tominaga H. Selective adsorption behavior of phosphate onto aluminum hydroxide gel[J]. Journal of Hazardous Materials, 2010, 181(1-3): 574-579.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-15
  • 最后修改日期:2022-10-30
  • 录用日期:2022-11-27
文章二维码