钢拱塔斜拉桥温度耦合效应和索力预测
CSTR:
作者:
作者单位:

1.福州大学土木工程学院;2.福建省建筑科学研究院有限公司;3.福建省榕圣市政工程股份有限公司

基金项目:

国家自然科学基金面上项目(52178276);福建省自然科学基金面上项目(2021J01601),福州市科技计划项目(2021-Y-084);


Temperature Coupling Effects and Cable Force Prediction of A Cable-Stayed Bridge with A Steel Arch Tower
Author:
Affiliation:

1.School of Civil Engineering, Fuzhou University;2.Fujian Academy of Building Research Co., Ltd;3.Fujian Rongsheng Municipal Engineering Co.,Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    钢拱塔斜拉桥的受力体系与传统斜拉桥有所不同,为研究环境温度变化对这种异型桥塔斜拉桥主要受力部件的影响,以某钢拱塔斜拉桥为工程背景,首先基于在线监测获取的环境和部件温度数据,分析斜拉索索力、拱塔倾角和主梁应变的温度时变效应;然后以斜拉索为研究对象,通过该桥的有限元模型升降温模拟,分析各部件温差所引起的温度耦合效应对拉索索力的影响;最后以环境温度、主梁温度、桥塔温度为输入,索力为输出,利用长短期记忆神经网络对实测索力-温度数据进行映射,实现数据压缩和特征提取,建立温度—索力智能化预测模型,再对网络模型输入新的温度监测数据,以智能预测索力。研究结果表明:主梁和钢拱塔温度变化具有周期性,且滞后于环境温度;主梁应变与环境温度的变化趋势基本一致但具有一定的滞后性,环境温度变化对拱塔倾角的影响很小且没有周期性规律;索力与环境温度呈线性负相关关系,且需要考虑斜拉桥各部件的温差所引起的温度耦合效应;长短期记忆神经网络对带有时序特性的数据训练效果好,建立的温度-索力关系模型准确度高,可用于该桥索力的实时预测。

    Abstract:

    The mechanical system of a cable-stayed bridge with a steel arch tower is different from a traditional cable-stayed bridge. In order to investigate the effects of ambient temperature variations on the main components of a cable-stayed bridge with a tower in an abnormal shape, an actual cable-stayed bridge with a steel arch tower has been used as the engineering prototype. The online temperature data of the onsite environment and the bridge components were first collected and used to analyze the time-varying effects of the environmental temperature on the cable forces, the tower obliquity and the stress of the main girder. Subsequently, the analysis was focused on the cable forces. The temperature variation simulation was applied to the finite element model of the bridge, and the temperature coupling effects caused by the temperature difference between different bridge components on the cable forces were analyzed. Lastly, the temperatures of the environment, the tower and the main girder were used as the inputs, while the cable forces were defined as the outputs of a long short-term memory neural network. The network was trained using the actual measurement samples of the temperatures and the cable forces. Data compression and feature extraction are realized during the training process. After that, the intelligent prediction model for the cable forces was established, and new temperature monitoring data were input into the network model for intelligently predicting the cable forces. The analysis results show that the temperature variations of the main girder and the steel arch tower follow a periodic rule and lag behind the ambient temperature. The strain variation tendency of the main girder accords well with the ambient temperature, but the latter has a time lag, the influence of the ambient temperature variation on the obliquity of the arch tower is very small without any periodic rule. A linear negative correlation is found between the cable forces and the ambient temperature. The temperature coupling effect caused by the temperature difference between different bridge components should be considered in analysis. The long and short-term memory neural network is suitable for the data with timing characteristics. The cable force prediction model based on the neural network has high prediction accuracy, and it can be used for the real-time prediction of this bridge. age cracking causing by shrinkage is one of the important factors for the deteriorations of concrete, the extension and extension of cracks can be slowed down or even reduced by adding fibers.

    参考文献
    [1] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(05): 59-78.LIU Y J, LIU J, ZHANG N. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(05): 59-78. (in Chinese)
    [2] 刘泽佳, 陈溢涛, 周立成, 等. 桥梁长期健康监测大数据温度与应变特征及关联性分析[J]. 科学技术与工程, 2018, 18(35): 72-79.LIU Z J, CHEN Y T, ZHOU Y C, et al. Analysis of characteristics and correlation for temperature and strain based on long-term bridge health monitoring big data[J]. Science Technology and Engineering. 2018, 18(35): 72-79. (in Chinese)
    [3] KROMANIS R, KRIPAKARAN P. Predicting thermal response of bridges using regression models derived from measurement histories[J]. Computers & Structures, 2014, 136(3):64-77.
    [4] LIU J, LIU Y, JIANG L, et al. Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge[J]. Advances in Structural Engineering, 2019, 22(13):2785-2798.
    [5] TOME E S, PIMENTEL M, FIGUEIRAS J. Structural response of a concrete cable-stayed bridge under thermal loads[J]. Engineering Structures, 2018;176:652–672.
    [6] XIA Y, CHEN B, ZHOU X Q, et al. Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior[J]. Structural Control & Health Monitoring, 2013, 20(4):560-575.
    [7] 黄侨, 赵丹阳, 任远, 等. 温度作用下斜拉桥挠度的时间多尺度分析[J]. 哈尔滨工业大学学报, 2020, 52(03): 18-25.HUANG Q, ZHAO D Y, REN Y, et al. Multiple time scale analysis of temperature-induced deflection of cable-stayed bridges[J]. Journal of Harbin Institute of Technology, 2020, 52(03): 18-25. (in Chinese)
    [8] ZHOU Y, SUN L, FU Z, et al. General formulas for estimating temperature-induced mid-span vertical displacement of cable-stayed bridges[J]. Engineering Structures, 2020:111012.
    [9] 许翔, 黄侨, 任远, 等. 大跨钢斜拉桥实测结构温度场分析[J]. 哈尔滨工业大学学报, 2019, 51(09): 14-21.XU X, HUANG Q, REN Y, et al. Thermal field analysis for large span steel cable-stayed bridges using in-situ measurements[J]. Journal of Harbin Institute of Technology, 2019, 51(09): 14-21. (in Chinese)
    [10] LI Y, HE S, LIU P. Effect of solar temperature field on a sea-crossing cable-stayed bridge tower[J]. Advances in Structural Engineering, 2019, 22(8): 1867-1877.
    [11] 张清华, 马燕, 王宝州. 高原环境新型组合桥塔温度场与温度应力特性分析[J]. 桥梁建设, 2020, 50(05): 30-36.ZHANG Q H, MA Y, WANG B Z. Analysis of temperature field and thermal stress characteristics for a novel composite bridge tower catering for plateau environment[J]. Bridge Construction, 2020, 50(05): 30-36. (in Chinese)
    [12] 赵珧冰, 孙测世, 彭剑, 等. 温度变化对拉索频率与索力的影响[J]. 应用力学学报, 2013, 30(06): 904-908.ZHAO Y B, SUN C S, PENG J, et al. Effects of temperature changes on the frequencies and tension forces of cables[J]. Chinese Journal of Applied Mechanics, 2013, 30(06): 904-908. (in Chinese)
    [13] SUANGGA M, HIDAYAT I, JULIASTUTI, et al. Temperature effect on cable tension forces of cable-stayed bridge[J]. IOP Conference Series: Earth and Environmental Science, 2018, 195(1).
    [14] MONTASSAR S, MEKKI O B, VAIRO G. On the effects of uniform temperature variations on stay cables[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5).
    [15] 郑秋怡, 周广东, 刘定坤. 基于长短时记忆神经网络的大跨拱桥温度-位移相关模型建立方法[J]. 工程力学, 2021, 38(04): 68-79.ZHENG Q Y, ZHOU G D, LIU D K. Method of modeling temperature-displacement correlation for long-span arch bridges based on long short-term memory neural networks[J]. Engineering Mechanics, 2021, 38(04): 68-79. (in Chinese)
    [16] 胡铁明, 苟红兵, 张冠华, 等. 基于温度与支座位移相关性的斜拉桥损伤预警[J]. 沈阳大学学报(自然科学版), 2015, 27(01): 55-59.HU T M, GOU H B, ZHANG G H, et al. Damage alarming for cable-stayed bridge based on correlation of temperature and displacement[J]. Journal of Shenyang University (Natural Science), 2015, 27(01): 55-59. (in Chinese)
    [17] 李顺龙, 李惠, 欧进萍, 等. 考虑温度和风速影响的桥梁结构模态参数分析[J]. 土木工程学报, 2009, 42(04): 100-106.LI S L, LI H, OU J P, et al. Identification of model parameters of bridges considering temperature and wind effects[J]. China Civil Engineering Journal, 2009, 42(04): 100-106. (in Chinese)
    [18] 秦劲东, 方圣恩, 张玮, 等. 基于3A指标的斜拉桥上部结构状态评估[J]. 土木与环境工程学报(中英文), 2022, 44(03): 71-78.QIN J D, FANG S E, ZHANG W, et al. Superstructure state evaluation of cable-stayed bridge Using 3A indicators[J]. Journal of Civil and Environmental Engineering, 2022, 44(03): 71-78. (in Chinese)
    [19] 上海市质量技术监督局.基于环境振动激励的桥梁拉索索力测试方法: DB31/T 973-2016[S]. 2016.Shanghai Municipal Bureau of Quality and Technical Supervision. Cable Tension Measurement of Bridge with Ambient Vibration Method: DB31/T 973-2016[S]. 2016. (in Chinese)上海市质量技术监督局.基于环境振动激励的桥梁拉索索力测试方法: DB31/T 973-2016[S]. 2016.Shanghai Municipal Bureau of Quality and Technical Supervision. Cable Tension Measurement of Bridge with Ambient Vibration Method: DB31/T 973-2016[S]. 2016. (in Chinese)
    [20] 刘扬, 向胜涛, 王达. 基于BP-LSTM混合模型的钢-混组合桥面系空间温度场及温度效应实时评估及预测[J]. 土木工程学报, 2021, 54(11):15.IU Y, XIANG S T WANG D. Real-time evaluation and prediction of spatial temperature field and temperature effect of steel-concrete composite bridge deck system based on BP-LSTM Hybrid model. China Civil Engineering Journal[J]. 2021, 54(11):15.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:129
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-09-08
  • 最后修改日期:2022-11-07
  • 录用日期:2022-11-27
文章二维码