基于无人机航拍与改进U-Net的建筑外墙裂缝检测
CSTR:
作者:
作者单位:

1.长沙理工大学 土木工程学院;2.中国建筑第五工程局有限公司

基金项目:

湖南省自然科学基金(2021JJ30716);湖南省高新技术产业科技创新引领计划:基于视觉与图像识别的重大交通基础设施智慧监测共性技术研究(2020KG2026)


Crack Detection of Building Exterior Wall Based on UAV Aerial Photography and Improved U-Net
Author:
Affiliation:

1.Changsha University of Science and Technology;2.China Construction Fifth Engineering Bureau Co., Ltd

Fund Project:

Natural Science Foundation of Hunan Province(2021JJ30716);Science and Technology Innovation Leading Plan of Hunan High-tech Industry:Research on generic technology of intelligent monitoring of major traffic infrastructure based on vision and image recognition(2020KG2026)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对建筑外墙裂缝人工检测方法检测效率低、检测效果和安全性差的问题,提出了基于无人机航拍与计算机视觉的裂缝检测方法。首先使用无人机绕建筑物航拍采集裂缝图像,并构建裂缝数据集。其次,针对U-Net存在细长裂缝分割不连续、复杂背景下裂缝漏检及背景误检的问题;将模型编码网络替换为预训练的ResNet50,以提升模型特征表达能力;添加改进的多孔空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块,获取多尺度上下文信息;用改进的损失函数来处理裂缝图像正负样本分布极度不均的问题。实验表明:改进的U-Net模型解决了原模型存在的问题,IoU指标和F1_score分别提升了3.53、4.18个百分点;与经典分割模型相比,改进模型的裂缝分割性能最优。与人工检测方法相比,所提方法可以安全、高效且准确地进行建筑外墙裂缝检测。

    Abstract:

    Aiming at the problems of low efficiency, poor detection effect and poor safety of manual detection methods for building exterior wall cracks, a crack detection method based on Unmanned Aerial Vehicle (UAV) aerial photography and computer vision was proposed. Firstly, the UAV was used to collect the crack images by aerial photography around the buildings, and constructed a crack dataset. Secondly, aiming at the problems of discontinuous segmentation of slender cracks, missed detection of cracks and background false detection under complex background in U-Net. The model encoder was replaced with pre-trained ResNet50 to improve the feature expression ability of the model. The improved Atrous Spatial Pyramid Pooling (ASPP) module was added to obtain multi-scale context information. The improved loss function was used to deal with the problem of extremely uneven distribution of positive and negative samples in crack images. Experiments show that the improved U-Net model solved the problems existing in the original model, the IoU and F1_score were increased by 3.53 and 4.18 percentage points respectively. Compared with the classical segmentation model, the improved model has the best crack segmentation performance. Compared with manual detection methods, the proposed method can efficiently, accurately and safely detect building exterior wall cracks.

    参考文献
    [1] 周颖,刘彤.基于计算机视觉的混凝土裂缝识别[J].同济大学学报(自然科学版),2019,47(09):1277-1285.ZHOU Y, LIU T. Concrete Crack Identification Based on Computer Vision [J]. Journal of Tongji University (Natural Science Edition),2019,47(09):1277-1285. (in Chinese)
    [2] Munawar H S, Hammad A W A, Haddad A, et al. Image-based crack detection methods: A review[J]. Infrastructures, 2021, 6(8): 115.
    [3] DAIS D, BAL I E, SMYROU E, et al. Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning[J]. Automation in Construction, 2021, 125: 103606.
    [4] 宋立博,费燕琼.两类YOLOv4-tiny简化网络及其裂缝检测性能比较[J].同济大学学报(自然科学版),2022,50(01):129-137.SONG L B, FEI Y Q, Comparison of two types of YOLOv4-tiny simplified networks and their crack detection performance[J]. Journal of Tongji University (Natural Science Edition), 2022,50(01):129-137. (in Chinese)
    [5] JU H Y, TAO M, WEI L, et al. Pixelwise asphalt concrete pavement crack detection via deep learning‐based semantic segmentation method[J]. Structural Control and Health Monitoring, 2022; 29(8): e2974.
    [6] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany. 2015. 234-241.
    [7] CHEN LC, ZHU YK, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 15th European Conference on Computer Vision. Munich, Germany. 2018. 833-851.
    [8] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 6230-6239.
    [9] 李良福,王楠,武彪,等.基于改进PSPNet的桥梁裂缝图像分割算法[J].激光与光电子学进展,2021,58(22):101-109.LI L f, WANG N, WU B, et al. Bridge crack image segmentation algorithm based on improved PSPNet [J]. Advances in Laser and Optoelectronics, 2021,58(22):101-109. (in Chinese)
    [10] Li G, Li X, Zhou J, et al. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network[J]. Measurement, 2021, 176: 109171.
    [11] 曹锦纲,杨国田,杨锡运.基于注意力机制的深度学习路面裂缝检测[J].计算机辅助设计与图形学学报,2020,32(08):1324-1333.CAO J G, YANG G T, YANG X Y. Deep Learning for Pavement Crack Detection Based on Attention Mechanism [J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(08): 1324-1333. (in Chinese)
    [12] Nguyen N H T, Perry S, Bone D, et al. Two-stage convolutional neural network for road crack detection and segmentation[J]. Expert Systems with Applications, 2021, 186: 115718.
    [13] 孟庆成,李明健,万达,等.基于M-Unet的混凝土裂缝实时分割算法[J/OL].土木与环境工程学报(中英文):1-9[2022-09-21].http://kns.cnki.net/kcms/detail/50.1218.tu. 20220725.0934.002.html.MENG Q C, LI M J, WAN D, et al. Real-time Concrete Crack Segmentation Algorithm Based on M-Unet[J/OL]. Journal of Civil and Environmental Engineering:1-9[2022-09-21].http://kns.cnki.net/kcms/detail/50.1218.tu. 20220725.0934.002.html.(in Chinese)
    [14] DANG L M, WANG H, Li Y, et al. Automatic tunnel lining crack evaluation and measurement using deep learning[J]. Tunnelling and Underground Space Technology, 2022, 124: 104472.
    [15] LI Y, ZHANG J, GUAN Z, et al. Experimental Study on the Correlation between Crack Width and Crack Depth of RC Beams[J]. Materials, 2021, 14(20): 5950.
    [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
    [17] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 1451-1460.
    [18] MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 fourth international conference on 3D vision (3DV). IEEE, 2016: 565-571.
    [19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:268
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-09-27
  • 最后修改日期:2022-10-28
  • 录用日期:2022-11-27
文章二维码