北方寒冷地区模块化钢框架结构多目标优化设计
CSTR:
作者单位:

河北工业大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-objective optimization design of modular steel frame structure in cold northern region
Author:
Affiliation:

Hebei University of Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文主要针对北方寒冷地区模块化钢框架结构节能性和经济性的矛盾问题,对模块化钢框架结构能耗和成本两个设计目标进行同步优化研究。首先,根据模块化钢框架结构的特点,进行参数化设计研究,提出了在不同建筑尺寸下模块化钢框架结构的BIM模型自动建模方法;其次,在Energyplus建筑能耗分析软件计算数据的基础上,采用多种机器学习算法进行建筑能耗预测,建立一种高效精确的建筑能耗预测模型;最后,联立建筑能耗预测模型和建筑成本计算公式,在满足结构承载力的约束条件下,基于NSGA-Ⅱ算法进行模块化钢框架结构能耗和成本的多目标优化设计,生成帕累托最优解集。本方法解决了模块化钢框架结构“能耗+成本”的多目标一体化设计难题,推动了模块化钢框架结构的智能化升级,实现了模块化钢框架结构设计的快速高效化。

    Abstract:

    This paper aims at solving the contradictive design problem of the modular steel frame structure in cold northern regions when considering both energy- and cost- saving. A synchronous optimization study with energy consumption and cost objectives is hence carried out for target modular steel frame structures. First, parametric modeling of modular steel frame structures is studied according to their characteristics. An automatic BIM modeling method is developed for modular steel frame structures. Second, the building energy consumption is modeled using various machine learning algorithms based the database that is constructed from the Energyplus software. The proposed XGBoost model provides efficient and accurate predictions for the building energy consumption. Finally, the energy consumption model as well as the cost formula serve as the objective functions in NSGA-Ⅱ algorithm to build the design optimization program for modular steel frame structures. During the optimization, structural bearing capacity must be satisfied. Pareto solution set is then achieved by the developed program and is analyzed. By solving the multi-objective design problem of modular steel frame structures with advanced computing techniques, this study contributes to the intelligent upgrade of the modular steel frame structure industry, and realizes the rapid and efficient design of modular steel frame structures.

    参考文献
    [1] WANG H, ZHAO X, Ma G W. Novel coupled modular steel structure and seismic tests on highperformance interconnection[J]. Journal of Constructional Steel Research, 2022, 189: 107058.
    [2] 陈志华, 周子栋, 刘佳迪, 等. 多层钢结构模块建筑结构设计与分析[J]. 建筑结构, 2019, 49(16): 59-64.CHEN Z H, ZHOU Z D, LIU J D, et al. Structural design and analysis of multi-storey steel structure module structures[J]. Building Structure, 2019, 49(16): 59-64. (in Chinese)
    [3] LUO S, SONG D, SHEN K, et al. Influence of the order exchange of the node connection in the force analysis of steel structures[J]. Frontiers in Materials, 2022: 370.
    [4] CHEN K, XU G, XUE F, et al. A physical internet-enabled building information modelling system for prefabricated construction[J]. International Journal of Computer Integrated Manufacturing, 2018, 31(04-05): 349-361.
    [5] 吴会来, 谭洪卫, 邓丰. 基于遗传算法的低密度住宅可再生能源利用潜力参数化设计方法研究[J]. 住宅科技, 2021, 41(07): 62-69.WU H L, TAN H W, DENG F. Research on Parametric Design Method of Renewable Energy Utilization Potential of Zero Energy House Based on Genetic Algorithm[J]. Housing Science, 2021, 41(07): 62-69. (in Chinese)
    [6] HE Y, LIU X H, ZHANG H L, et al. Hybrid Framework for Rapid Evaluation of Wind Environment around Buildings through Parametric Design, CFD Simulation, Image Processing and Machine Learning[J]. Sustainable Cities and Society, 2021, 73: 103092.
    [7] 陈圣格, 周婷, 陈志华, 等. 模块建筑参数化平面优化及智能化结构设计方法[J]. 重庆大学学报, 2021, 44(09): 51-66.CHEN S G, ZHOU T, CHEN Z H, et al. Parametric plan optimization and structural intelligent design method of modular steel building[J]. Journal of Chongqing University, 2021, 44(09): 51-66. (in Chinese)
    [8] 高源, 胡可, 岳晓鹏, 等. 北方乡村住宅节能与热舒适的形体参数多目标优化设计[J]. 华侨大学学报(自然科学版), 2021, 42(05): 619-627.GAO Y, HU K, YUE X P, et al. Shape parameters design of northern rural houses for multi-objective optimization of energy performance and thermal comfort[J]. Journal of Huaqiao University (Natural Science), 2021, 42(05): 619-627. (in Chinese)
    [9] SUSOROVA I, TABIBZADEH M, RAHMAN A, et al. The effect of geometry factors on fenestration energy performance and energy savings in office buildings[J]. Energy and Buildings, 2013, 57: 6-13.
    [10] 张涛, 王雯翡, 成雄蕾, 等. 数据驱动技术在建筑能耗模拟中的应用研究[J]. 科技与创新, 2020, (16): 156-157.ZHANG T, WANG W F, CHENG X L, et al. Research on the application of data-driven technology in building energy consumption simulation[J]. Science and Technology & Innovation, 2020, 16: 156-157. (in Chinese)
    [11] MOTUZIENE V, JUODIS E S. Simulation based complex energy assessment of office building fenestration[J]. Journal of civil Engineering and management, 2010, 16(03): 345-351.
    [12] 李继伟, 冯国会, 徐丽. 建筑能耗预测的机器学习回归模型研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(06): 1098-1106.LI J W, FENG G H, XV L. Study on machine learning regression model for prediction of building energy consumption[J]. Journal of Shenyang Jianzhu University ( Natural Science), 2021, 37(06): 1098-1106. (in Chinese)
    [13] KIM T, JANG M, JEONG H C, et al. Short-Term Residential Load Forecasting Using 2-Step SARIMAX[J]. Journal of Electrical Engineering & Technology, 2022, 17(2): 751-758.
    [14] 欧阳前武, 符亚磊, 任中俊. 基于时间序列分析模型的建筑能耗两级预测关系研究[J]. 建设科技, 2019, 14: 53-56.OUYANG Q W, FU Y L, REN Z J. The study has been supported by the National Key R&D Program of China[J]. Construction Science and Technology, 2019, 14: 53-56. (in Chinese)
    [15] XU X, FENG G, CHI D, et al. Optimization of performance parameter design and energy use prediction for nearly zero energy buildings[J]. Energies, 2018, 11(12): 3252.
    [16] 马泽宇, 张慧颖, 黄海燕. 地震荷载作用下基于ASA和MMFD优化组合算法的框架结构多目标优化设计[J]. 河南科学, 2017, 35(11): 1819-1822.MA Z Y, ZHANG H Y, HUANG H Y. Multi-objective optimization design of frame structure based on ASA and MMFD optimal combination algorithm under seismic loading[J]. Henan Science, 2017, 35(17), 1819-1822. (in Chinese)
    [17] 王国亮, 张荫, 陶清林. 钢框架结构多目标优化设计[J]. 低温建筑技术, 2010, 32(06): 30-32.WANG G L, ZHANG M, TAO Q L. Multi-objective optimization for steel frames[J]. Low Temperature Architecture Technology, 2010, 32(06): 30-32. (in Chinese)
    [18] 周俊文,刘界鹏.基于多种群遗传算法的钢框架结构优化设计[J].土木与环境工程学报(中英文),2022, 1-11.ZHOU J W, LIU J P. Optimization design of steel frame structure based on multipopulation genetic algorithm[J]. Journal of Civil and Environmental Engineering, 2022, 1-11. (in Chinese)
    [19] ASSIMI H, JAMALI A, NARIMAN-ZADEH N. Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator[J]. Neural Computing and Applications, 2019, 31(10): 5729-5749.
    [20] PIEGAY N, BREYSSE D, ELACHACHI S M. Effect of intrinsic and epistemic uncertainties on the multiobjective optimal design of a hyperstatic structure[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5(1): 04018047.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:51
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-25
  • 最后修改日期:2023-01-10
  • 录用日期:2023-02-15
文章二维码