土体热力学性质及本构关系研究综述
CSTR:
作者:
作者单位:

1.内江师范学院 建筑工程学院;2.重庆大学 土木工程学院

中图分类号:

O346

基金项目:

国家自然科学基金(52008213);山地城镇建设与新技术教育部重点实验室开放基金(LNTCCMA-20220107)


Review on the thermomechanical behaviors and constitutive relations of soil
Author:
Affiliation:

1.School of Architectural Engineering,Neijiang Normal University;2.a School of Civil Engineering;3.b Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education

Fund Project:

National Natural Science Foundation of China (No. 52008213); Key Laboratory of New Technology for Construction of Cities in Mountain Area of Chongqing University (No. LNTCCMA-20220107)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [138]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着可再生能源和地源热泵技术的不断发展,浅层地热能的开发逐渐成为国内外岩土工作者们的重点课题之一,但其理论研究远远落后于工程应用,尤其是土体在应力场和温度场复杂耦合作用下的力学机理研究尚不成熟。对于砂土、黏土、粉土等单一土体,国内外学者从温控试验和本构理论两个方面展开了相关研究,也取得了一系列的成果,对土体的热力学特性有一定的认识。为了更为全面深入的认识土体的热力学特性,使热本构模型在能源工程中更为贴合实际的进行推广和应用,本文首先概述了土体热力学性质的试验研究现状,随后,重点综述基于不同理论框架建立的土体热力学本构关系的国内外研究进展和现状,阐述热力学本构关系在实际工程中的应用,最后,针对目前存在的问题,提出进一步研究的建议,讨论并展望了土体热力学本构关系的研究发展趋势。

    Abstract:

    Exploitation of the shallow geothermal energy has gradually become a key topic in geotechnical engineering at home and abroad with the rapid development of renewable energy and geothermal heat pump technologies. However, the theory of the shallow geothermal energy falls far behind its application. In particular, the mechanism of soil under the complex coupling of stress and temperature fields remains unclear. For a single soil such as sand, clay, and silt, some results have been found by carrying out the temperature-controlled experiments and proposing the related thermal constitutive models. A certain understanding of the thermodynamic characteristics of soil is got. To promote more comprehensive and in-depth thermal behavior of soil and contribute to more practical promotion and application of the thermal constitutive model in energy engineering, this paper firstly summarizes the experimental research on the thermomechanical properties of soil. Then, the domestic and foreign research progress and status quo of thermomechanical constitutive relations of soil, based on different theoretical frameworks, are reviewed in detail. Thereafter, the application of these thermomechanical constitutive relations in practical engineering is introduced briefly. Finally, suggestions in further research are made, and the development trend of the thermomechanical constitutive relation of soil is discussed and prospected, in view of current existing problems.

    参考文献
    [1] 李政, 张东杰, 潘玲颖, 等. “双碳”目标下我国能源低碳转型路径及建议[J]. 动力工程学报, 2021, 41(11): 905-971.LI Z, ZHANG D J, PAN L Y, et al. Low-carbon transition of China’s energy sector and suggestions with the “carbon-peak and carbon-neutrality” target [J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 905-971. (in Chinese)
    [2] 马冰, 贾凌霄, 于洋, 等. 世界地热能开发利用现状与展望 [J]. 中国地质, 2021, 48(6): 1734-1747.MA B, JIA L X, YU Y, et al. The development and utilization of geothermal energy in the world [J]. Geology in China, 2021, 48(6): 1734-1747. (in Chinese)
    [3] 马峰, 王贵玲, 魏帅超, 等. 2018年地热勘探开发热点回眸 [J]. 科技导报, 2019, 37(1): 134-143.MA F, WANG G L, WEI S C, et al. Summary of hot research topics in geothermal exploitation in 2018 [J]. Science and Technology Review, 2019, 37(1): 134-143. (in Chinese)
    [4] 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24.PANG Z H, HU S B, WANG J Y. A roadmap to geothermal energy development in China [J]. Science and Technology Review, 2012, 30(32): 18-24. (in Chinese)
    [5] GENS A, SANCHEZ M, GUIMARAES L D, et al. A full-scale in situ heating test for high-level nuclear waste disposal: Observations, analysis and interpretation [J]. Geotechnique, 2009, 59(4): 377-399.
    [6] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at lambeth college, london-geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Geotechnique, 2009, 59(3): 237-248.
    [7] FADEJEV J, SIMSON R, KURNITSKI J, et al. A review on energy piles design, sizing and modelling [J]. Energy, 2017, 122: 390-407.
    [8] KNELLWOLF C, PERON H,LALOUI L. Geotechnical analysis of heat exchanger piles [J]. Journal Of Geotechnical And Geoenvironmental Engineering, 2011, 137(10): 890-902.
    [9] CROLL J G A. The role of thermal ratcheting in pavement failures [J]. Proceedings of the Institution of Civil Engineers - Civil Engineering, 2009, 162(3): 127-140.
    [10] KERTESZ R,SANSALONE J. Hydrologic transport of thermal energy from pavement [J]. Journal of Environmental Engineering, 2014, 140(8): 04014028.
    [11] POTHIRAKSANON C, BERGADO D T, ABUEL-NAGA H M. Full-scale embankment consolidation test using prefabricated vertical thermal drains [J]. Soils and Foundations, 2010, 50(5): 599-608.
    [12] BA?ER T, LU N, MCCARTNEY J S. Operational response of a soil-borehole thermal energy storage system [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015097.
    [13] BOURNE-WEBB P, BURLON S, JAVED S, et al. Analysis and design methods for energy geostructures [J]. Renewable and Sustainable Energy Reviews, 2016, 65: 402-419.
    [14] BRANDL H. Energy foundations and other thermo-avtive ground structures [J]. Geotechnique, 2006, 56(2): 81-122.
    [15] LALOUI L, DONNA A D. Understanding the behaviour of energy geo-structures [J]. Proceedings of the Institution of Civil Engineers - Civil Engineering, 2011, 164(4): 184-191.
    [16] ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature [J]. Journal of Geotechnical and Geoenvironment Engineering, 2006, 132(7): 902-910.
    [17] CEKEREVAC C, LALOUI L. Experimental study of thermal effects on the mechanical behaviour of a clay [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209-228.
    [18] KINOSHITA N, YASUHARA H. Thermally induced bahavior of the openings in rock mass affected by high temperatures [J]. International Journal of Geomechanics, 2011, 11(2): 124-130.
    [19] NG C W W, ZHOU C. Cyclic behaviour of an unsaturated silt at various suctions and temperatures [J]. Geotechnique, 2014, 64(9): 709-720.
    [20] NG C W W, WANG S H, ZHOU C. Volume change behaviour of saturated sand under thermal cycles [J]. Geotechnique Letters, 2016, 6: 1-8.
    [21] HUECKEL T, OIS B F, LALOUI L. Explaining thermal failure in saturated clays [J]. Ge′otechnique, 2009, 59(3): 197-212.
    [22] COCCIA C J R,MCCARTNEY J S. Thermal volume change of poorly draining soils ii: Model development and experimental validation [J]. Computers and Geotechnics, 2016, 80: 16-25.
    [23] LALOUI L,FRAN?OIS B. Acmeg-t: Soil thermoplasticity model [J]. Journal of Engineering Mechanics, 2009, 135(9): 932-944.
    [24] YAO Y P,ZHOU A N. Non-isothermal unified hardening model-a thermo-elasto-plastic model for clays [J]. Geotechnique, 2013, 63(15): 1328-1345.
    [25] 王兴, 孔亮, 袁庆盟, 等. 能源土边界面模型的应力更新算法及算例分析[J]. 土木工程学报, 2019, 52(2): 155-161.WANG X, KONG L, YUAN Q M, et al. The stress update algorithm of bounding surface model on gas hydrate-bearing soil and case study [J]. China Civil Engineering Journal, 2019, 52(2): 155-161. (in Chinese)
    [26] 费康, 钱健, 洪伟, 等. 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651-2661.FEI K, QIAN J, HONG W, et al. Numerical analysis of mechanical behavior of energy piles in clay [J]. Rock and Soil Mechanics, 2018, 39(7): 2651-2661. (in Chinese)
    [27] 费康, 刘汉龙, 孔纲强, 等. 热力耦合边界面模型在COMSOL中的开发应用[J]. 岩土力学, 2017, 38(6): 1819-1826.FEI K, LIU H L, KONG G Q, et al. Implementation of a thermo-bounding surface model in COMSOL [J]. Rock and Soil Mechanics, 2017, 38(6): 1819-1826. (in Chinese)
    [28] 刘汉龙, 王成龙, 孔纲强, 等. U型、w型和螺旋型埋管形式能量桩热力学特性对比模型试验[J]. 岩土力学, 2016, 37(1): 441-447.LIU H L, WANG C L, KONG G Q, et al. Comparative model test on thermomechanical characteristics of energy pile with U-shape, W-shape and spiral-shape [J]. Rock and Soil Mechanics, 2016, 37(1): 441-447. (in Chinese)
    [29] 党政, 关文, 程晓辉, 等. CFG能源桩用于混凝土路面除冰降温的试验研究[J]. 中国公路学报, 2019, 32(2): 19-30.DANG Z, GUAN W, CHENG X H, et al. Experimental study on CFG energy pile for concrete pavement deicing and cooling [J]. China Journal of Highway and Transport, 2019, 32(2): 19-30. (in Chinese)
    [30] 吴道勇, 赖远明, 马勤国, 等. 季节冻土区水盐迁移及土体变形特性模型试验研究[J]. 岩土力学, 2016, 37(2): 465-476.WU D Y, LAI Y M, MA Q G, et al. Model test study of water and salt migration and deformation characteristics in seasonally frozen soil [J]. Rock and Soil Mechanics, 2016, 37(2): 465-476. (in Chinese)
    [31] 黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下pcc能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673.HUANG X, KONG G Q, LIU H L, et al. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field [J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese)
    [32] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094.GUI S Q, CHENG X H. In-situ tests on structural responses of energy piles during heat exchanging process [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese)
    [33] 张家威, 张国柱, 郭易木, 等. 层状地层能源管桩传热性能试验研究[J]. 岩石力学与工程学报, 2020, 39(2): 3615-3626.ZHANG J W, ZHANG G Z, GUO Y M, et al. Investigation on heat transfer characteristics of PHC energy piles in multi-layer strata [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 3615-3626. (in Chinese)
    [34] CASAGRANDE B, SABOYA F, MCCARTNEY J S, et al. Investigation of a field-scale energy micropile in stratified soil under cyclic temperature changes [J]. Geomechanics for Energy and the Environment, 2022, 29: 100263.
    [35] 姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150.YAO Y P, ZHANG B Y, ZHU J G. Behaviors, constitutive models and numerical simulation of soils [J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese)
    [36] 李春红, 孔纲强, 车平, 等. 能量桩桩-土接触面力学特性室内试验研究[J]. 建筑节能, 2016, 44(301): 99-105.LI C H, KONG G Q, CHE P, et al. Laboratory experimental on interface mechanical properties of energy pile-soil [J]. Building Energy Efficiency, 2016, 44(301): 99-105. (in Chinese)
    [37] 李春红, 孔纲强, 刘汉龙, 等. 桩-红黏土接触面温控测试及应力-应变关系研究[J]. 土木工程学报, 2019, 52(2): 89-94.LI C H, KONG G Q, LIU H L, et al. Study of temperature-controlled pile-red clay interface tests and stress-strain relationship [J]. China Civil Engineering Journal, 2019, 52(2): 89-94. (in Chinese)
    [38] 李春红, 孔纲强, 张鑫蕊, 等. 温控桩-土接触面三轴试验系统研制与验证[J]. 岩土力学, 2019, 40(12): 4955-4962.LI C H, KONG G Q, ZHANG X R, et al. Development and verfication of temperature-controlled pile-soil interface triaxial shear test system [J]. Rock and Soil Mechanics, 2019, 40(12): 4955-4962. (in Chinese)
    [39] BALDI G, HUECKEL T,PELLEGRINI R. Thermal volume changes of the mineral-water system in low-porosity clay soils [J]. Canadian Geotechnical Journal, 1988, 25(4): 807-825.
    [40] BING B, GUO LANJIE, SONG H. Pore pressure and consolidationof saturated silty clay induced by progressively heating/cooling [J]. Mechanics of Materials, 2014, 75: 84-94.
    [41] BRUYN D D, THIMUS J F. The influence of temperature on mechanical characteristics of Boom clay-the results of an initial laboratory program [J]. Engineering Geology, 1996, 41: 117-126.
    [42] BURGHIGNOLI A, DESIDERI A, MILIZIANO S. A laboratory study on the thermomechanical behaviour of clayey soils [J]. Canadian Geotechnical Journal, 2000, 37(4): 764-780.
    [43] FAVERO V, FERRARI A, LALOUI L. Thermo-mechanical volume change behaviour of opalinus clay [J]. International Journal of Rock Mechanics Mining Sciences, 2016, 90: 15-25.
    [44] ROMERO E, VILLAR M V, LLORET A. Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays [J]. Engineering Geology, 2005, 81(3): 255-268.
    [45] 潘旋. 冻结钙质黏土应力-应变特性的真三轴试验研究[D]. 硕士学位论文. 安徽: 安徽理工大学, 2020, 1-87.PAN X. Ture triaxial test on stress-strain characteristics of frozen calcareous clay [D]. Dissertation for Masteral Degree. Anhui: Anhui University of Science and Technology, 2020, 1-87. (in Chinese)
    [46] ZHOU C, NG C W W. Effects of temperature and suction on plastic deformation of unsaturated silt under cyclic loads [J]. Journal of Materials in Civil Engineering, 2016, 28(12)
    [47] LIU H, LIU H, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand [J]. Soils and Foundations, 2018, 58(6): 1326-1338.
    [48] LIU H, LIU H L, XIAO Y, et al. Influence of temperature on the volume change behavior of saturated sand [J]. Geotechnical Testing Journal, 2018, 41(4): 747–758.
    [49] LIU H, MCCARTNEY J S, XIAO Y. Thermal volume changes of saturated sand during loading-unloading-heating phase [C]. E3S Web of Conferences, 2020, 205: 08002.
    [50] 郭桢,刘干斌,尹铁锋, 等. 考虑温度的软黏土邓肯-张模型参数试验研究[J]. 建筑结构, 2014, 44(3): 93-96.GUO Z, LIU G B, YIN T F, et al. Test study on parameters of Duncan-Chang model for soft clay with consideration of temperature influence [J]. Building Structure, 2014, 44(3): 93-96. (in Chinese)
    [51] 祁良, 郑荣跃, 陶海冰, 等. 考虑温度影响的宁波软土临界状态参数研究[J]. 水文地质工程地质, 2015, 42(5): 79-83.QI L, ZHENG R Y, TAO H B, et al. A study of the critical state parameter of the Ningbo soft clay considering the effect of temperature [J]. Hydrogeology and Engineering Geology, 2015, 42(5): 79-83. (in Chinese)
    [52] LIU H, LIU H, XIAO Y, et al. Non-linear elastic model incorporating temperature effects [J]. Geotechnical Research, 2018, 5(1): 22-30.
    [53] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils [J]. Jornal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
    [54] GITAU A N, GUMBE L O, BIAMAH E K. Influence of soil water on stress–strain behaviour of a compacting soil in semi-arid kenya [J]. Soil and Tillage Research, 2006, 89(2): 144-154.
    [55] 王丽琴, 鹿忠刚, 邵生俊. 岩土体复合幂–指数非线性模型[J]. 岩石力学与工程学报, 2017, 36(5): 1269-1278.WANG L Q, LU Z G, SHAO S J. A composite power exponential nonlinear model of rock and soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1269-1278. (in Chinese)
    [56] 王伟, 宋新江, 凌华, 等. 滨海相软土应力-应变曲线复合指数-双曲线模型[J]. 岩土工程学报, 2010, 32(9): 1455-1459.WANG W, SONG X J, LING H, et al. Composite exponential-hyperbolic model for stress-strain curve of seashore soft soil [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1455-1459. (in Chinese)
    [57] UCHAIPICHAT A, KHALILI N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt [J]. Geotechnique, 2009, 59(4): 339-353.
    [58] SOLEIMANBEIGI A, EDIL T B, BENSON C H. Effect of temperature on geotechnical properties of recycled asphalt shingle mixtures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 04014097.
    [59] 谢云, 陈正汉, 李刚. 考虑温度影响的重塑非饱和膨胀土非线性本构模型 [J]. 岩土力学, 2007, 28(9): 1937-1942.XIE Y, CHEN Z H, LI G. Thermo-nonlinear model for unsaturated expansive soils [J]. Rock and Soil Mechanics, 2007, 28(9): 1937-1942. (in Chinese)
    [60] ROSCOE K H, BURLAND J B. On the yielding of soils [J]. Ge′otechnique, 1958, 8(1): 22-53.
    [61] HUECKEL T, RITA P, CARLOS D O. A constitutive study of thermo-elasto-plasticity of deep carbonatic clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(7): 549-574.
    [62] 刘红, 陈琴梅, 卢黎, 等. 考虑温度影响的非关联弹塑性饱和黏土本构模型[J]. 土木与环境工程学报(中英文), 2020, 42(4): 53-59.LIU H, CHEN Q M, LU L, et al. Temperautre-dependent non-associated elastic-plastic consititutive model for saturated caly [J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 53-59. (in Chinese)
    [63] ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Thermomechanical model for saturated clays [J]. Geotechnique, 2009, 59(3): 273-278.
    [64] CUI Y J, NABIL S, PIERRE D. A thermomechanical model for saturated clays [J]. Canadian Geotechnical Journal, 2000, 37(3): 607-620.
    [65] HONG P Y, PEREIRA J M, CUI Y J, et al. A two-surface thermomechanical model for saturated clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1059-1080.
    [66] 殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988, 10(4): 64-71.YIN Z Z. A double yield surface model of soils [J]. Chinese Journal of Geotechnial Engineering,1988, 10(4): 64-71. (in Chinese)
    [67] TANG A M, CUI Y J. Modelling the thermomechanical volume change behaviour of compacted expansive clays [J]. Geotechnique, 2009, 59(3): 185-195.
    [68] ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays [J]. Engineering Geology, 1999, 54: 173–183.
    [69] KR?HN K P. New conceptual models for the resaturation of bentonite [J]. Applied Clay Science, 2003, 23(1-4): 25-33.
    [70] GRAHAM J, TANAKA N, CRILLY T, et al. Modified Cam-Clay modelling of temperature effects in clays [J]. Canadian Geotechnical Journal, 2001, 38(3): 608-620.
    [71] HAMIDI A, KHAZAEI C. A thermo-mechanical constitutive model for saturated clays [J]. International Journal of Geotechnical Engineering, 2010, 4: 445-459.
    [72] HAMIDI A, SAEED T, CYRUS K. Thermomechanical constitutive model for saturated clays based on critical state theory [J]. International Journal of Geomechanics, 2014, 15(1): 04014038.
    [73] WANG L Z, WANG K J, HONG Y. Modeling temperature-dependent behavior of soft clay [J]. Journal of Engineering Mechanics, 2016, 142(8): 04016054.
    [74] ZHOU C, NG C W W. A thermomechanical model for saturated soil at small and large strains [J]. Canadian Geotechnical Journal, 2015, 52(8): 1101-1110.
    [75] DAFALIAS Y F. Bounding surface plasticity i: Mathematical foundation and hypoplasticity [J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
    [76] ANANDARAJAH A, DAFALIAS Y F. Bounding surface plasticity III: Application to anisotropic cohesive soils [J]. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318.
    [77] DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity II: Application to isotropic cohesive soils [J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291.
    [78] ZHOU C, NG C W W. Simulating the cyclic behaviour of unsaturated soil at various temperatures using a bounding surface model [J]. Geotechnique, 2016, 66(4): 344-350.
    [79] ZHOU C, FONG K Y, NG C W W. A new bounding surface model for thermal cyclic behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666.
    [80] 陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547-553.CHEN Y N, YANG Z X. Thermodynamics-based bounding surface model for overconsolidated clay [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547-553. (in Chinese)
    [81] 姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151.YAO Y P, HOU W, LUO D. Unified hardening model for soils [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese)
    [82] 祝恩阳, 姚仰平, 朱建明. SMP面应力状态图解法[J]. 岩土工程学报, 2015, 37(1): 36-40.ZHU E Y, YAO Y P, ZHU J M. Graphic method of SMP stress state [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 36-40. (in Chinese)
    [83] 朱建明, 程海峰, 姚仰平. 基于SMP强度准则的岩石残余应力与围压的关系[J]. 煤炭学报, 2013, 38(1): 43-48.ZHU J M, CHENG H F, YAO Y P. Relationship between the residual stress and the surrounding rock pressure based on SMP failure criterion [J]. Journal of China Coal Society, 2013, 38(1): 43-48. (in Chinese)
    [84] 罗汀, 姚仰平, 松岡元. 基于SMP准则的土的平面应变强度公式[J]. 岩土力学, 2000, 21(4): 390-393.LUO T, YAO Y P, SONG B Y. Soil strength equation in plane strain based on SMP [J]. Rock and Soil Mechanics, 2000, 21(4): 390-393. (in Chinese)
    [85] 朱建明, 吴则祥, 张宏涛, 等. 基于 Lade-Duncan 和SMP两种强度准则的岩石残余应力研究[J]. 岩石力学与工程学报, 2012, 31(8): 1715-1720.ZHU J M, WU Z X, ZHANG H T, et al. Study of residual stress of rock based on Lade-Duncan and SMP strength criteria [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1715-1720. (in Chinese)
    [86] 姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑 工程科学 材料科学, 2004, 34(11): 1283-1299.YAO Y P, LU D C, ZHOU A N, et al. Generalized nonlinear strength theory and transformation stress space [J]. Science in China Ser. E Engineering and Materials Science, 2004, 34(11): 1283-1299. (in Chinese)
    [87] 路德春, 姚仰平, 邹博. 广义非线性强度理论体系[J]. 岩土力学, 2007, 28(10): 2009-2016.LU D C, YAO Y P, ZOU B. System of generalized nonlinear strength theory [J]. Rock and Soil Mechanics, 2007, 28(10): 2009-2016. (in Chinese)
    [88] 万征, 姚仰平. 考虑压剪耦合特性的岩土材料广义非线性屈服准则[J]. 岩石力学与工程学报, 2014, 33(2): 376-389.WAN Z, YAO Y P. A new generalized nonlinear yield criterion for geomaterials considering coupling behavior of shearing and compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 376-389. (in Chinese)
    [89] 邹博, 姚仰平, 路德春. 变换应力三维化方法在清华模型中的应用[J]. 岩石力学与工程学报, 2005, 24(23): 4303-4307.ZOU B, YAO Y P, LU D C. Qinghua model revised by SMP criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4303-4307. (in Chinese)
    [90] 路德春, 杜修力, 姚仰平, 等. 线性变换应力空间及其应用[J]. 岩土力学, 2010, 31(1): 271-276.LU D C, DU X L, YAO Y P, et al. Linear transformed stress space and its application [J]. Rock and Soil Mechanics, 2010, 31(1): 271-276. (in Chinese)
    [91] 王乃东, 姚仰平. 基于变换应力方法的各向异性模型三维化[J]. 岩土工程学报, 2011, 33(1): 50-56.WANG N D, YAO Y P. Generalization of anisotropic constitutive models using transformed stress method [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 50-56. (in Chinese)
    [92] YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path [J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [93] 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153.YAO Y P, LIU L, LUO T. UH model for sands [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese)
    [94] YAO Y P, HOU W, ZHOU A N. Uh model: Three-dimensional unified hardening model for overconsolidated clays [J]. Geotechnique, 2009, 59(5): 451-469.
    [95] 姚仰平, 侯伟, 周安楠. 基于Hvorslev面的超固结土本构模型[J]. 中国科学E辑: 技术科学, 2007, 37(11): 1417-1429.YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated soils based on Hvorslev plane [J]. Scientia Sinaca Technologica, 2007, 37(11): 1417-1429. (in Chinese)
    [96] 罗汀, 侯伟, 姚仰平. 考虑渐近状态特性的超固结土本构模型 [J]. 岩土力学, 2010, 31(3): 683-694.LUO T, HOU W, YAO Y P. An asymptotic state constitutive model for overconsolidated clays [J]. Rock and Soil Mechanics, 2010, 31(3): 683-694. (in Chinese)
    [97] 姚仰平, 万征, 陈生水. 考虑颗粒破碎的动力UH模型[J]. 岩土工程学报, 2011, 33(7): 1036-1044.YAO Y P, WAN Z, CHEN S S. Dynamic UH model considering particle crushing [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1036-1044. (in Chinese)
    [98] 姚仰平, 孔玉侠, 宋美娜. 考虑原生各向异性土的统一硬化模型[J]. 工业建筑, 2008, 38(8): 6-9.YAO Y P, KONG Y X, SONG M N. Inherent anisotropic unified hardening model for soils [J]. Industrial Construction, 2008, 38(8): 6-9. (in Chinese)
    [99] 孔令明, 姚仰平. 考虑时间效应的K0各向异性UH模型 [J]. 岩土工程学报, 2015, 37(5): 812-820.KONG L M, YAO Y P. K0-anisotropic UH model considering time effects [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. (in Chinese)
    [100] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55.YAO Y P, TIAN Y, LIU L. Three-dimensional anisotropic UH model for sands [J]. Engineering Mechanics, 2018, 35(3): 49-55. (in Chinese)
    [101] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学: 技术科学, 2011, 41(2): 158 ~ 169.YAO Y P, YANG Y F, NIU L. UH model considering temperature effects [J]. Scientia Sinaca Technologica, 2011, 41(2): 158- 169. (in Chinese)
    [102] 姚仰平, 牛雷, 杨一帆, 等. 考虑温度影响的非饱和土本构模型[J]. 岩土力学, 2011, 32(10): 2881-2888.YAO Y P, NIU L, YANG Y F. Constitutive model for unsaturated clays considering temperature effects [J]. Rock and Soil Mechanics, 2011, 32(10): 2881-2888. (in Chinese)
    [103] 姚仰平, 万征, 杨一帆, 等. 饱和黏土不排水剪切的热破坏[J]. 岩土力学, 2011, 32(9): 2561-2569.YAO Y P, WAN Z, YANG Y F. Thermal failure for saturated clay under undrained condition [J]. Rock and Soil Mechanics, 2011, 32(9): 2561-2569. (in Chinese)
    [104] 孔令明, 姚仰平. 超固结土热黏弹塑性本构关系[J]. 岩土力学, 2015, 36(1): 1-8.KONG L M, YAO Y P. Thermo-visco-elastoplastic constitutive relation for overconsolidated clay [J]. Rock and Soil Mechanics, 2015, 36(1): 1-8. (in Chinese)
    [105] YAO Y-P, KONG L-M, ZHOU A-N, et al. Time-dependent unified hardening model: Three-dimensional elastoviscoplastic constitutive model for clays [J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162.
    [106] ZHANG Z,CHENG X. Simulation of nonisothermal consolidation of saturated soils based on a thermodynamic model [J]. ScientificWorldJournal, 2013, 2013: 192163.
    [107] 赵成刚, 张雪东, 郭璇. 土的本构方程与热力学[J]. 力学进展, 2006, 36(4): 611-618.ZHAO C G, ZHANG X D, GUO X. Constitutive equations of soils and thermodynamics [J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese)
    [108] 李志敏. 基于能量耗散理论冻土本构模型的研究[J]. 低温建筑技术, 2009, (8): 87-89.LI Z M. Study on elastic-plastic damage constitutive model of frozen soil based on energy dissipation theory [J]. Cryogenic Construction Technology, 2009, (8): 87-89. (in Chinese)
    [109] 鲁晓刚, 王卓, Cui Y W, 等. 计算热力学、计算动力学与材料设计[J]. 科学通报, 2013, 58(35): 3656-3664.LU X G, WANG Z, CUI Y W. Computaional thermodynamics, computaional kinetics and material design [J]. Chinese Science Bulletin, 2013, 58(35): 3656-3664. (in Chinese)
    [110] 李亮, 李彦. 基于热力学原理的混凝土热-力耦合本构模型[J]. 北京工业大学学报, 2016, 42(4): 554-560.LI L, LI Y. Thermo-mechanical coupling constitutive model of concrete based on thermodynamics [J]. Journal of Beijing University of Technology, 2016, 42(4): 554-560. (in Chinese)
    [111] 何敏, 冯孝鹏, 李宁, 等. 饱和正冻土水热力耦合模型的改进[J]. 岩土工程学报, 2018, 40(7): 1212-1220.HE M, FENG X P, LI N, et al. Improvement of coupled thermo-hydro-mechanical model for saturated freezing soil [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1212-1220. (in Chinese)
    [112] 张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型[J]. 岩土工程学报, 2013, 35(7): 1297-1306.ZHANG Z C, CHENG X H. Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese)
    [113] ZHANG Z C, CHENG X H. A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics [J]. Computers and Geotechnics, 2016, 80: 373-382.
    [114] BAI B, YANG G C, LI T, et al. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials [J]. Mechanics of Materials, 2019, 139: 103180.
    [115] YANG G, BAI B. A thermodynamic model to simulate the thermo-mechanical behavior of fine-grained gassy soil [J]. Bulletin of Engineering Geology and the Environment, 2019, 79(5): 2325-2339.
    [116] WHEELER S J. A conceptual model for soils containing large gas bubbles [J]. Geotechnique, 1988, 38(3): 389-397.
    [117] YANG G, LIU Y, CHEN P. Thermodynamic modeling of stress–strain behavior of saturated sand considering temperature effect [J]. AIP Advances, 2021, 11(12): 125-206.
    [118] GOLCHIN A, VARDON P J, HICKS M A. A thermo-mechanical constitutive model for fine-grained soils based on thermodynamics [J]. International Journal of Engineering Science, 2022, 174: 103579.
    [119] KURZ D, SHARMA J, ALFARO M, et al. Semi-empirical elastic-thermoviscoplastic model for clay [J]. Canadian Geotechnical Journal, 2016, 53(10): 1583-1599.
    [120] LALOUI L, CEKEREVAC C. Numerical simulation of the non-isothermal mechanical behaviour of soils [J]. Computers and Geotechnics, 2008, 35(5): 729-745.
    [121] LALOUI L, CEKEREVAC C. Non-isothermal plasticity model for cyclic behaviour of soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 437-460.
    [122] LIU E L, XING H L. A double hardening thermo-mechanical constitutive model for overconsolidated clays [J]. Acta Geotechnica, 2008, 4(1): 1-6.
    [123] 沈珠江. 粘土的双硬化模型 [J]. 岩土力学, 1995, 16(1): 1-8.SHEN Z J. A double hardening model for clays [J]. Rock and Soil Mechanics, 1995, 16(1): 1-8. (in Chinese)
    [124] 刘祖典. 岩土材料的简易双硬化模型 [J]. 西北水资源与水工程, 1993, 4(2): 88-96.CHEN Z D. A simple double hardening model for geotechnical materials [J]. Water Resources and Water Engineering, 1993, 4(2): 88-96. (in Chinese)
    [125] 姚仰平, 谢定义, 俞茂宏. 复杂应力下砂土的广义双剪应力破坏准则及双硬化本构模型[J]. 西安冶金建筑学院学报, 1994, 26(4): 392-397.YAO Y P, XIE D Y, YU M H. Generalized twin shear stress failure criterion and double-hardening constitutive model of sand under the complex stress state [J]. Journal of Xi’an Institutte of Metallurgy and Constructural Engineering, 1994, 26(4): 392-397. (in Chinese)
    [126] MA Q J, NG C W W, MA?íN D, et al. An approach for modelling volume change of fine-grained soil subjected to thermal cycles [J]. Canadian Geotechnical Journal, 2017, 54(6): 896-901.
    [127] Collins I F, Boulbibane M. Geomechanical analysis of unbound pavements based on shakedown theory [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 50-59.
    [128] HABIBALLAH T, CHAZALLON C. An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(6): 577-596.
    [129] Nowamooz H, Li K, Chazallon C. Shakedown modeling of unsaturated expansive soils subjected to wetting and drying cycles [C]. E3S Web of Conferences, 2016, 9: 08007.
    [130] MASIN D. A hypoplastic constitutive model for clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 311-336.
    [131] MA?íN D, KHALILI N. A thermo-mechanical model for variably saturated soils based on hypoplasticity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(12): 1461-1485.
    [132] ZHANG S, LENG W, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials [J]. International Journal of Plasticity, 2012, 34: 93-113.
    [133] 张升, 贺佐跃, 滕继东, 等. 考虑结构性的软岩热弹塑性本构模型研究[J]. 岩石力学与工程学报, 2017, 36(3): 571-578.ZHANG S, HE Z Y, TENG J D, et al. A thermo-elasto-plastic model for soft rocks considering structure [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 571-578. (in Chinese)
    [134] ZHANG S, XU S, TENG J, et al. Effect of temperature on the time-dependent behavior of geomaterials [J]. Comptes Rendus Mecanique, 2016, 344(8): 603-611.
    [135] LALOUI L, LEROUEIL S, CHALINDAR S. Modelling the combined effect of strain rate and temperature on one-dimensional compression of soils [J]. Canadian Geotechnical Journal, 2008, 45: 1765–1777.
    [136] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical [J]. Geotechnique, 1963, 13(3): 211-240.
    [137] 冯兴, 姚仰平, 李汝宁, 等. 考虑温度UH模型的有限元应用[J]. 岩土工程学报, 2015, 37(2): 181-185.FENG X, YAO Y P, LI R N, et al. Application of UH model considering temperature to finite element method [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 181-185. (in Chinese)
    [138] 王浩, 张志超, 程晓辉. 基于热力学理论的水泥石热-力耦合本构模型和有限元分析[J]. 岩石力学与工程学报, 2018, 37(1): 67-76.WANG H, ZHANG Z C, CHENG X H. A thermal-mechanical constitutive model for cement rock based on thermodynamics and its finite element application [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 67-76. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:196
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-13
  • 最后修改日期:2022-12-29
  • 录用日期:2023-01-11
文章二维码