风电塔筒环法兰连接结构型高强铆钉疲劳特性研究
CSTR:
作者:
作者单位:

1.四川大学土木工程系;2.深圳大学 土木与交通工程学院;3.四川建筑职业技术学院

中图分类号:

TU391

基金项目:

国家自然科学基金(51878426,52208182);科技部重点研发计划(2022YFE0113600);德阳揭榜挂帅项目(2021JBJZ002)


Study on Fatigue Feature of Structural High-Strength Rivets in Ring Flange Connections of Wind Turbine Towers
Author:
Affiliation:

1.Department of Civil Engineering, Sichuan University;2.College of Civil and Transportation Engineering, Shenzhen University;3.Sichuan College of Architectural Technology;4.Department of Civil Engineering, Sichuan University, Chengdu, 610065

Fund Project:

National Natural Science Foundation of China (No. 51878426, No. 52208182); MOST Key Research and Development Plan (No. 2022YFE0113600); Research Program of Deyang Science and Technology Office (No. 2021JBJZ002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    结构型高强铆钉具有预紧力稳定、防松性能优异、抗疲劳和抗延迟断裂能力强等优点,有望取代风电塔筒环法兰连接现采用的高强螺栓。但其在法兰中的疲劳性能尚待相关研究检验。本文针对采用结构型高强铆钉的环法兰连接开展对照性模型疲劳试验和精细化数值分析,探究其疲劳特性与劣化机理。首先,基于环法兰荷载传递特征,在静载拉伸试验的基础上,开展了12件模型试件的疲劳试验,包含高强螺栓和高强铆钉试件各6件。进一步,结合基于局部应变的SWT疲劳评价方法,开展精细化多尺度有限元分析。结果表明:两类试件的疲劳失效均易见于第一扣螺纹处;在200万次加载循环下,高强铆钉试件的平均等效疲劳强度为68.9 MPa,较高强螺栓的52.1 MPa提高约32.2%;由于高强铆钉与套环间的螺纹更为平缓且内、外螺纹间接触面积更大,有效降低螺纹根部应力集中,提升抗疲劳性能。综上,研究建议:对采用结构型高强铆钉的环法兰连接进行疲劳验算时,高强铆钉的疲劳强度等级可取为FAT 56,配合指数常数m = 3。

    Abstract:

    The structural high-strength (HS) rivet demonstrated advantages including preload stability and excellent resistance to the loosening, fatigue and delayed fracture. Thus, the HS rivet has become a promising alternative to the HS bolt currently employed in the ring-flange connection of wind turbine towers. However, relevant studies are still lacked and required on the fatigue performance of HS rivets in ring-flange connections. The work carried out comparative model fatigue tests and refined numerical analysis on the ring-flange connection with HS rivets, in order to investigate its fatigue feature and deterioration mechanism. At first, based on the load transfer feature of ring flange connections, model fatigue tests of twelve specimens were conducted after the static tensile test. The tested twelve specimens included six with HS rivets and six with HS bolts. Further, multi-scale finite element analysis was performed with refined models, in accordance with the local strain-based SWT fatigue evaluation approach. According to the result, the first engaged thread of rivets/bolts is prone to fatigue failure in both the two types of specimens. Under the 2 million loading cycles, the equivalent fatigue strength of HS rivet specimens shows a mean value of 68.9 MPa, which increases by 32.2% compared with the value (52.1 MPa) of HS bolt specimens. The stress concentration at the root of threads could be effectively mitigated due to the flattened thread and increased contact area of inner-outer threads between the sleeve ring and HS rivet. Consequently, the fatigue performance of HS rivets is enhanced. As above, this study suggested that in the fatigue check of ring-flange connections with structural HS rivets, the fatigue strength of HS rivets could be determined as FAT 56, in accordance with the power constant of m = 3.

    参考文献
    [1] 戴靠山,王英,黄益超,袁天骄.风力发电塔结构抗风抗震、健康监测和振动控制研究综述[J].特种结构,2015,32(03):91-100.
    [2] 葛晨,乔继红. 提振全球气候治理雄心的中国担当[N]. 新华每日电讯,2020-12-13(002).
    [3] Madsen C A, Kragh-Poulsen J C, Thage K J, et al. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations[C]//IOP Conference Series: Materials Science and Engineering.IOP Publishing, 2017, 276(1): 012034.
    [4] Gollub P, Jensen J F, Giese D, et al. Flanged foundation connection of the Offshore Wind Farm Amrumbank West–Concept, approval, design, tests and installation[J]. Stahlbau, 2014, 83(8): 522-528.
    [5] Redondo R, Mehmanparast A. Numerical analysis of stress distribution in offshore wind turbine M72 bolted connections[J]. Metals, 2020, 10(5): 689.
    [6] Lochan S, Mehmanparast A, Wintle J. A review of fatigue performance of bolted connections in offshore wind turbines[J]. Procedia Structural Integrity, 2019, 17: 276-283.
    [7] Yu Z, Sun P, Wang D. Fatigue life prediction for flange connecting bolts of wind turbine tower[J]. Journal of Shanghai Jiaotong University (Science), 2020, 25(4): 526-530.
    [8] 史文超,丁宝平,程茜,钮永田,金阿宝. 风电机组塔架高强螺栓应用中存在问题的分析[C]//.中国农机工业协会风能设备分会《风能产业》(2013年第9期).,2013:66-74.
    [9] 周舟,杨理诚,梁勇,曾毅.大型风力机基础法兰高强度螺栓断裂失效分析[J].太阳能学报,2016,37(09):2230-2235.
    [10] Mehmanparast A, Lotfian S, Vipin S P. A review of challenges and opportunities associated with bolted flange connections in the offshore wind industry[J]. Metals, 2020, 10(6): 732.
    [11] Seidel M, Schaumann P. Measuring fatigue loads of bolts in ring flange connections[C]//European Wind Energy Conference. 2001.
    [12] 瞿伟廉,秦文科,郭佳凡.高耸塔架结构节点联结螺栓松动等效模型研究[J].武汉理工大学学报,2007(01):139-141.
    [13] 陈凯. 风电塔法兰螺栓松动对结构振动影响数值分析[D].中国地震局工程力学研究所,2019.
    [14] 孙永伟. 高强度螺栓用钢的氢扩散动力学及氢致延迟断裂控制技术研究[D].哈尔滨工程大学,2016.
    [15] Adedipe O, Brennan F, Kolios A. Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 141-154.
    [16] 易志宏,刘浪,田波,胡方年./collab> 林子倩,卜宜都,杨璐. 不锈钢连接节点研究现状与展望[C]//.第二十二届全国现代结构工程学术研讨会论文集.[出版者不详],2022:141-146.DOI:10.26914/c.cnkihy.2022.015566.
    [17] 贾云龙,张钦,左世斌,范亚锋,余涛.海上风电装备用环槽铆钉连接结构防腐性能研究[J].风能,2022(06):74-78.
    [18] Mariam M, Afendi M, Majid M S A, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods[J]. Composite Structures, 2018, 200: 647-658.
    [19] Zhu P, Zhang Q, Luo X, et al. Experimental and numerical studies on ductile-fracture-controlled ultimate resistance of bars in aluminum alloy gusset joints under monotonic tensile loading[J]. Engineering Structures, 2020, 204: 109834.
    [20] Smith S, Potticary G, Lewis G. Lockbolt qualification testing for wing panel assemblies[J]. SAE Aerofast, 2000, 2000.
    [21] 杨树森,张光明,刘煜.拉铆钉及其在铁道车辆中的应用[J].铁道车辆,2006(12):11-13+49.
    [22] 易志宏,刘浪,田波,胡方年.桥梁用高强度环槽铆钉抗剪承载力和疲劳特性试验研究[J].四川建筑,2021,41(05):166-169.
    [23] 张天雄,王元清,陈志华,卜宜都,董帅,何伟.高强度不锈钢短尾环槽铆钉力学性能试验研究[J].工程力学,2021,38(S1):151-158.
    [24] 王永岩,张向峰,闫蕾蕾,秦楠,林君山.机车车辆Huck铆钉铆接件疲劳试验分析[J].石家庄铁道大学学报(自然科学版),2017,30(02):63-67.
    [25] 王中兴. 铝合金结构环槽铆钉连接及梁柱节点受力机理与设计方法[D]. 清华大学, 2020.
    [26] 张钦,贾云龙.风电机组用新型紧固连接技术疲劳性能试验研究[J].东方汽轮机,2020(04):55-58.
    [27] Madsen C A, Kragh-Poulsen J C, Thage K J, et al. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations[C]//IOP Conference Series: Materials Science and Engineering.IOP Publishing, 2017, 276(1): 012034.
    [28] Seidel M, Schaumann P. Measuring fatigue loads of bolts in ring flange connections[C]//European Wind Energy Conference. 2001.
    [29] 徐祉康,易伟同,祝磊.风力发电机组钢塔筒M64螺栓连接法兰受拉承载性能试验研究[J].建筑结构,2021,51(S1):1522-1527.
    [30] Tobinaga I, Ishihara T. A study of action point correction factor for L‐type flanges of wind turbine towers[J]. Wind Energy, 2018, 21(9): 801-806.
    [31] Ajaei B B, Soyoz S. Effects of preload deficiency on fatigue demands of wind turbine tower bolts[J]. Journal of Constructional Steel Research, 2020, 166: 105933.
    [32] GB/T 5277-1985, 紧固件 螺栓和螺钉通孔[S].
    [33] GB/T 228.1-2021, 金属材料 拉伸试验 第1部分:室温试验方法[S].
    [34] Weijtjens W, Stang A, Devriendt C, et al. Bolted ring flanges in offshore-wind support structures-in-situ validation of load-transfer behaviour[J]. Journal of Constructional Steel Research, 2021, 176: 106361.
    [35] Van-Long H, Jean-Pierre J, Jean-François D. Behaviour of bolted flange joints in tubular structures under monotonic, repeated and fatigue loadings I: Experimental tests[J]. Journal of Constructional Steel Research, 2013, 85: 1-11.
    [36] Pavlović M, Heistermann C, Veljković M, et al. Connections in towers for wind converters, part I: Evaluation of down-scaled experiments[J]. Journal of Constructional Steel Research, 2015, 115: 445-457.
    [37] Weijtjens W, Stang A, Devriendt C, et al. Bolted ring flanges in offshore-wind support structures-in-situ validation of load-transfer behaviour[J]. Journal of Constructional Steel Research, 2021, 176: 106361.
    [38] 张天雄,王元清,陈志华,卜宜都,何伟,衡月昆.不锈钢高强度螺栓机械性能与施拧方法试验研究[J].工业建筑,2022,52(07):98-105+97.DOI:10.13204/j.gyjzG22050303.
    [39] 焦晋峰,刘展翔,刘丹,刘勇,郭琪,雷宏刚.预紧力缺失对8.8级M24高强度螺栓常幅疲劳性能影响分析[J].西安建筑科技大学学报(自然科学版),2022,54(01):35-44.DOI:10.15986/j.1006-7930.2022.01.005.
    [40] Schaumann P, Eichstädt R. Fatigue assessment of high-strength bolts with very large diameters in substructures for offshore wind turbines[C]//The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro, 2015.
    [41] KN K N S, Watson P, TH T H T. Stress-strain function for the fatigue of metals[J]. J mater, 1970, 5(4): 767-778.
    [42] Branco R, Costa J D, Borrego L P, et al. Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components[J]. International Journal of Fatigue, 2021, 151: 106405.
    [43] Schaumann P, Eichstädt R, Stang A. Advanced performance assessment methods for high‐strength bolts in ring‐flange connections[J]. Stahlbau, 2018, 87(5): 446-455.
    [44] Dowling, N. E . Local Strain Approach to Fatigue[J]. comprehensive structural integrity, 2003:77-94.
    [45] Lang K H, Korn M, Rohm T. Very high cycle fatigue resistance of the low alloyed steel 42CrMo4 in medium-and high-strength quenched and tempered condition[J]. Procedia Structural Integrity, 2016, 2: 1133-1142.
    [46] Schneider R, Wuttke U, Berger C. Fatigue analysis of threaded connections using the local strain approach[J]. Procedia Engineering, 2010, 2(1): 2357-2366.
    [47] 杨新华,陈传尧.疲劳与断裂(第二版〉[M].武汉:华中科技大学出版社,2018.
    [48] CEN/TC250: EN 1993-1-9: Eurocode 3: Design of steel structures - Part 1-9: Fatigue, Brussels, 2005.
    [49] 钢结构设计标准(附条文说明):GB 50017-2017[S]. 2017.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:264
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-15
  • 最后修改日期:2023-01-29
  • 录用日期:2023-02-15
文章二维码