基于BIM技术与模拟退火算法的村镇轻钢框架结构智能设计方法
CSTR:
作者单位:

天津大学

基金项目:

国家重点基础研究发展计划(973计划),国家建筑工程技术研究中心开放基金资助课题


Intelligent Design Method of Rural Light Steel Frame Structure Based on BIM Technology and Simulated Annealing Algorithm
Affiliation:

Tianjin University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统的村镇住宅结构设计流程需要人工进行大量的试算与重复建模工作,而村镇住宅受制于建设成本,无法像城镇住宅一样通过设计师进行专业的结构设计与验算,其安全性与经济性均难以满足要求。为此,提出了一种村镇轻钢框架结构的智能设计方法,包括智能建模与智能优化两个环节。首先,基于图层自动识别算法、光学字符识别技术、自适应分块算法提出了村镇轻钢框架结构BIM智能建模方法,包括图层识别、轴文本数据提取、墙体轮廓提取等,智能建模结果基本满足实际工程要求。之后,基于所提出的两阶段模拟退火算法给出了村镇轻钢框架结构的智能优化方法,优化速度较快,优化效果良好。最后,通过实际工程案例对所提出的智能设计方法进行了验证,结果表明,所提出的村镇轻钢框架结构智能设计方法具有可行性,与传统的人工设计方法相比,设计周期可缩短70%以上,材料用量和结构设计指标相当。

    Abstract:

    In the traditional structural design process, rural buildings require a lot of manual calculations and repeated modeling. However, due to the construction cost, rural buildings cannot be designed and checked professionally by designers like urban buildings, and their safety and economy are difficult to meet the requirements. Therefore, an intelligent design approach to structural design of rural light steel frame structure was proposed, including the intelligent modeling and intelligent optimization. Based on the automatic layer automatic classification method (ALCM), optical character recognition technology (OCR) and adaptive block algorithm, BIM intelligent modeling method of rural light steel frame structure was proposed where layer recognition, the extraction of axis text data and wall contour were included, and generated structural models meted the requirements of practical application. Based on the proposed two-stage simulated annealing algorithm, the intelligent optimization method of rural light steel frame structure was given. The proposed intelligent design method was verified by practical engineering cases and the results showed that the proposed intelligent design method of rural light steel frame structure was feasible. Compared with the traditional manual design method, the design period could be shortened by more than 70%, and the material consumption and structural design parameters were similar.

    参考文献
    [1] Zhou J, Yu L, Co-evolution of technology and rural society: The blossoming of taobao villages in the information era [J]. Journal of Rural Studies. 83 (2021) 81-87.
    [2] Wang W X, Gong L H, Yao L Y, Preference heterogeneity and payment willingness within rural households’ participation in rural human settlement improvement [J]. Journal of Cleaner Production. 312 (2021), 127529.
    [3] 周俊文,刘界鹏. 基于多种群遗传算法的钢框架结构优化设计[J/OL].土木与环境工程学报(中英文). https://kns.cnki.net/kcms/detail/50.1218.TU.20220718.0910.002.html.Zhou Junwen, Liu jiepeng, Optimization design of steel frame structure based on multi-population genetic algorithm, Journal of Civil and Environmental Engineering. https://kns.cnki.net/kcms/detail/50.1218.TU.20220718.0910.002.html.(in Chinese)
    [4] 孙得璋, 黄勇, 杨振宇, 等 . 九寨沟7.0级地震中典型非结构构件震害特征[J]. 地震工程与工程振动, 2019, 39(1): 27-34.Sun Dezhang, Huang Yong, Yang Zhengyu, et al. Seismic damages of typical nonstructural components in the MS7.0 Jiuzhaigou earthquake [J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1):27-34.(in Chinese)
    [5] 潘毅, 陈建, 包韵雷, 等 . 长宁6.0级地震村镇建筑震害调查与分析[J]. 建筑结构学报. 2020, 41(Sup 1): 297-306.Pan Yi, Chen Jian, Bao Yunlei, et al. Seismic damage investigation and analysis of rural buildings in MS6.0 Changning earthquake [J]. Journal of Building Structures, 2020, 41(Sup 1): 297-306. (in Chinese)
    [6] 李国强, 陈素文. 从汶川地震灾害看钢结构在地震区的应用[J]. 建筑钢结构进展, 2008, 10(4): 1-7, 62.LI G Q, CHEN S W. From the damage by Wenchuan earthquake to the application of steel building in seismic zone [J]. Progress in Steel Building Structures, 2008, 10(4): 1-7, 62. (in Chinese)
    [7] 刘红波, 张帆, 陈志华. 人工智能在土木工程领域 的应用研究现状及展望[J/OL]. 土木与环境工程学报 (中英文). https://kns. cnki. net/kcms/detail/50.1218.TU.20220312.1605.002.html.Liu Hongbo, Zhang Fan, Chen Zhihua. Applied research status and prospects of artificial intelligence in civil engineering field[J/OL]. Journal of Civil and Environmental Engineering. https://kns. cnki. net/kcms/ detail/50.1218.TU.20220312.1605.002.html.(in Chinese)
    [8] 鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11.Bao Yuequan, Li Hui. Artificial Intelligence for civil engineering [J]. China Civil Engineering Journal, 2019,52(5): 1-11. (in Chinese)
    [9] 程国忠, 周绪红, 刘界鹏, 等. 基于深度强化学习的高层剪力墙结构智能设计方法[J]. 建筑结构学报. 2022, 43(9): 84-91Cheng Guozhong, Zhou Xuhong, Liu Jiepeng, et al. Intelligent design method of high-rise shear wall structures based on deep reinforcement learning [J]. Journal of Building Structures, 2022, 43(9): 84-91. (in Chinese)
    [10] Zeng Z, Li X, Yu Y K, Deep floor plan recognitionusing a multi-task network with room-boundary-guided attention, in:2019 IEEE/CVF International Conference on Computer Vision (ICCV). 9095–9103, 2019, https://doi.org/10.1109/iccv.2019.00919.
    [11] Zhao Y, Deng X, Lai H. Reconstructing BIM from 2D structural drawings for existing buildings [J]. Automation in Construction, 2021, 128: 103750.
    [12] Zhao Y, Deng X, Lai H. A deep learning-based method to detect components from scanned structural drawings from reconstructing 3D models [J]. Applied Science, 2020, 10(6): 2066.
    [13] Liu C, Wu J, Kohi; P, et al. Raster-to-vector: revisiting floorplan for transformation [C]∥ Proceedings of the IEEE International Conference on Computer Vision. Venice: Institute of Electrical & Electronic Engineers, 2017, 2214-2222.
    [14] Domínguez B, García A , Feito F , Semiautomatic detection of floor topology from CAD architectural drawings, DesignComputer-Aided.44 (2012) 367–378, https://doi.org/10.1016/j.cad.2011.12.009.
    [15] Yin M, Ye Z, Tang L, et al. An automated layer classification method for converting CAD drawings to 3D BIM models [M]. Cham: Springer, 2019: 67-76.
    [16] Yin M, Tang L, Zhou T Y, et al. Automatic layer classification method-based elevation recognition in architectural drawings for reconstruction of 3D BIM models [J]. Automation in Construction, 2020, 113: 103082.
    [17] Delyova I, Frankovsky P, Bocko J, et al. Sizing and Topology Optimization of Trusses Using Genetic Algorithm [J]. Materials, 2021, 14(4):715.
    [18] Baghdadi A, Heristchian M, Kloft H. Design of prefabricated wall-floor building systems using meta-heuristic optimization algorithms [J]. Automation in Construction, 2020, 114:103156
    [19] Gholizadeh S, Shahezaei A. Optimal placement of steel plate shear walls for steel frames by bat algorithm [J]. The Structural Design of Tall and Special Buildings, 2015, 24(1): 1-18.
    [20] Gholizadeh S, Poorhoseini H. Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm [J]. Structural and Multidisciplinary Optimization, 2016, 54(4): 1011-1029.
    [21] 住房和城乡建设部科技与产业化发展中心. 钢结构住宅主要构件尺寸指南[M]. 北京: 中国建筑工业出版社, 2021.Technology and Industrialization Development Center of Ministry of Housing and Urban-Rural Development. Guide for Main Component Size of Steel Structure Residences [M]. Beijing: National Building Industry Press, 2021. (in Chinese)
    [22] 低层冷弯薄壁型钢房屋建筑技术规程: JGJ 227[S]. 北京: 中国环境科学出版社, 2011.Technical specification for low-rise cold-formed thin-walled steel building construction: JGJ 227 [S]. Beijing: National Environmental Science Publishing Press, 2011. (in Chinese)
    [23] 建筑抗震设计规范: GB 50011-2010 [S]. 北京: 中国建筑工业出版社, 2010.Code for sesmic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [24] 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国计划出版社, 2018.Standard for design of steel structures: GB 50017—2017 [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [25] Hasançebi O, Çarbasß S, Saka MP. Improving the performance of simulated annealing in structural optimization [J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 189–203.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-22
  • 最后修改日期:2023-01-06
  • 录用日期:2023-01-11
文章二维码