基于光弹法的颗粒材料直剪试验剪切滑移区研究
CSTR:
作者单位:

1.华东交通大学;2.中国地质大学

基金项目:

国家自然科学基金


Study of shear slip zone in direct shear test of granular materials based on photoelastic method
Author:
Affiliation:

1.EAST CHINA JIAOTONG UNIVERSITY;2.China University of Geosciences

Fund Project:

the National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    颗粒直剪试验剪切带的发展规律和分布特征决定了颗粒体强度,但不易观测。采用自制的试验装置对透明聚碳酸酯颗粒进行了直剪试验,基于光弹法原理,通过对颗粒的剪切力学特性、应力链分布、位移场的观测,研究了颗粒的力链发展过程、主接触角发展规律和剪切滑移面的发展规律,并在PFC2D离散元软件中进行了模拟分析。试验表明:直剪过程中颗粒体系的力链分布存在应力屏蔽现象;颗粒体系的强力链、接触角及主应力方向发生了偏转,且偏转特征基本一致;颗粒在剪切过程中形成拱形剪切滑移面,与水平剪切面共同形成拱形滑移剪切区。拱形滑移区在剪切初期就形成,且一直持续整个剪切过程。在剪切应力峰值时,拱形滑移区的高度与初始法向力成正比,厚度在(13~15) d50之间。在应力残余阶段拱形滑移区逐渐减小,拱形滑移区逐渐趋于稳定状态,且不同初始法向力下的拱形滑移区在应力残余阶段的高度相差不大,厚度在(8~9) d50之间。

    Abstract:

    The development pattern and distribution characteristics of the shear zone of the particle direct shear test determine the strength of the particle body, but it is not easy to observe. The direct shear test of transparent polycarbonate particles was carried out using a homemade test device. Based on the principle of photoelastic method, the development process of force chain, the development law of main contact angle and the development law of shear slip surface of particles were studied by observing the shear mechanical properties, stress chain distribution and displacement field of particles, and the simulation analysis was carried out in PFC2D discrete element software. The tests show that: the stress shielding phenomenon exists in the force chain distribution of the particle system during the direct shear process; the strong force chain, contact angle and main stress direction of the particle system are deflected, and the deflection characteristics are basically the same; the particles form an arch-shaped shear slip surface during the shear process, and form an arch-shaped slip shear zone together with the horizontal shear surface. The arch slip zone forms at the beginning of shear and continues throughout the shear process. At peak shear stress, the height of the arch-slip zone is proportional to the initial normal force and is between (13~15) d50 thick. The arch slip zone gradually decreases during the residual stress phase, and the arch slip zone gradually tends to a steady state, and the height of the arch slip zone under different initial normal forces does not differ significantly during the residual stress phase,and thickness between (8~9) d50.

    参考文献
    [1] Seyyed Mahdi Seyyedan. Numerical simulation of direct shear test on granular materials composed of breakable angular particles: A DEM-XFEM approach[J]. Powder Technology,2021,3911:450-466.
    [2] DaneshAkbar. Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)[J]. Transportation Geotechnics,2020,23: 2507–2527.
    [3] Dong Wang. Shear of granular materials composed of ellipses[J]. Granular Matter,2019,22(3):1259-1273.
    [4] MengFanjing. Force chain characteristics of dense particles sheared between parallel-plate friction system[J]. Results in Physics,2021,25:104328.
    [5] 秦建敏,迟璐璐.颗粒材料剪胀性的微观力学分析[J].岩土力学,2013,34(05):1508-1514.IN Jian-min, CHI Lu-lu. Micromechanical analysis of dilatancy in granular materials[J].Rock and Soil Mechanics,2013,34(05):1508-1514.
    [6] 蒋明镜,王富周,朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J].岩土力学,2010,31(1):253-298.IANG Ming-jing, WANG Fu-zhou, ZHU He-hua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J].Rock and Soil Mechanics, 2010,31(1):253-298.
    [7] 史旦达,周 健,刘文白等.砂土直剪力学性状的非圆颗粒模拟与宏细观机理研究[J].岩土工程学报,2010,32(10):1557-1565.HI Dan-da, ZHOU Jian, LIU Wen-bai, et al. Exploring macro- and micro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010,32(10):1557-1565.
    [8] 贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学,2010,31(9):2695-2703.IA Xue-ming, CHAI He-jun, ZHENG Ying-ren. Mesomechanics research of large direct shear test on soil and rock aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 2010,31(9):2695-2703.
    [9] 杨升,李晓庆.基于PFC3D的砂土直剪模拟及宏细观分析[J].计算力学学报,2019,36(6):777-783.ANG Sheng, LI Xiao-qing. Shear simulation and macro meso analysis of sand based on PFC3D[J].Chinese Journal of Computational Mechanics,2019,36(6):777-783.
    [10] 胡峰,李志清,胡瑞林等.基于大型直剪试验的土石混合体剪切带变形特征试验研究[J].岩石力学与工程学报,2018,37(3):766-778.U Feng, LI Zhi-qing, HU Rui-lin, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear tes[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):766-778.
    [11] 房营光.颗粒介质尺度效应的抗剪试验及物理机理分析[J].物理学报, 2014,63(03): 274-283.ang Ying-guang. Shear test and physical mechanism analysis on size effect of granular media[J].Acta Phys, 2014,63(03): 274-283.
    [12] ZhangJie. Force chains in a two-dimensional granular pure shear experiment[J]. Chaos,2008,18(4):041107
    [13] Karen E. Force chains in seismogenic faults visualized with photoelastic granular shear experiments[J]. Journal of Geophysical Research: Solid Earth,2008,113(B11):B11411.
    [14] A.Lashkari. Instability of loose sand in constant volume direct simple shear tests in relation to particle shape[J]. Acta Geotechnica,2020,15:2507–2527.
    [15] 杨荣伟,程晓辉.光弹颗粒材料的直剪试验研究[J].岩土力学,2009,30:103-109.ANG Rong-wei, CHENG Xiao-hui. Direct shear experiments of photoelastic granular materials[J]. Rock and Soil Mechanics, 2009,30:103-109.
    [16] 陈琼,王青花,赵闯等.玻璃-橡胶混合颗粒的力学响应研究[J].物理学报,2015,64(15): 338-346.hen Qiong, Wang Qing-hua, Zhao Chuang, et al. Mechanical response study of glass-rubber particle mixtures [J].Acta Phys, 2015,64(15): 338-346.
    [17] 耿大新,刘鑫磊,胡文韬等. 一种颗粒材料接触应力可视化试验加载设备及其使用方法[P].中国专利:CN110208080A, 2019-09-06Geng Da-xin, Liu Xin-lei, Hu Wen-tao, et al. A visual test loading equipment for contact stress of granular material and its application method[P]. Chinese patent: CN110208080A, 2019-09-06
    [18] 天津大学材料力学组.光弹性原理及测试技术[M].北京:科学出版社, 1980.collab>Materials Mechanics Group, Tianjin University. Photoelastic principle and testing technology[M].Beijing: science press, 1980.
    [19] 董云,柴贺军.土石混合料剪切面分形特征试验研究[J].岩土力学,2007,28(05):1015-1020.ONG Yun, CHAI He-jun. Experimental study on fractal character of shear surface of rock-soil aggregate mixture[J]. Rock and Soil Mechanics, 2007,28(05):1015-1020.
    [20] 王子寒,张若钰,景晓昆,肖成志,黄达.砂土可视化直剪试验与剪切带形成机制研究[J].工程力学,2022,39(07):217-226.ANG Zi-han, ZHANG Ruo-yu, JING Xiao-kun. A STUDY ON FORMING MECHANISM OF SHEAR BANDS AND VISUAL SHEARING TESTS OF SAND[J]. Engineering Mechanics, 2022,39(07):217-226.
    [21] 张祺,厚美瑛.直剪颗粒体系的尺寸效应研究[J].物理学报,2012,61(24): 348-353.hang Qi, Hou Mei-ying. Research on size effect of direct shear test[J].Acta Phys, 2012,61(24): 348-353.
    [22] 李爽,刘洋,吴可嘉.砂土直剪试验离散元数值模拟与细观变形机理研究[J].长江科学院院报,2017,34(04):104-110+116.I Shuang, LIU Yang, WU Ke-jia, et al. Exploring Mesoscopic Deformation Mechanism of Sand in Direct Shear Test by Numerical Simulation Using Discrete Element Method [J]. Journal of Yangtze River Scientific Research Institute, 2022,39(07):217-226.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:131
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-23
  • 最后修改日期:2023-02-21
  • 录用日期:2023-03-15
文章二维码