A series of hollow cylinder torsion shear tests were conducted for the silty soil in the Yellow River flood area, considering the effect of drainage shearing with fixed large principal stress direction. The shear stress-strain behavior as well as the anisotropy characteristics of silty soil were then presented. Under different intermediate principal stress coefficient b and major principal stress direction angle α, the stress-strain relationship and the corresponding shear stress ratio of silty soil were obtained. It was concluded that the value of and have a significant effect on the octahedral stress-strain and the shear stress-major principal strain. The obvious anisotropic character was observed, especially under or 1. Compressed deformation usually occurred in the major principal strain direction. Under a fixed α, the smaller shear strength occurred under a larger value. The peak shear strength and the corresponding axial strain were the largest under the conditions of α=45° and b=0.5, corresponding to the largest
[1] 徐东升,汪稔,孟庆山,王志兵,杨超.黄河三角洲粉土原位力学性能试验研究[J].岩石力学与工程学报, 2010, 29(02):409-416.U DONG SHENG, WANG REN, MENG QING SHAN, et al. Experimental research on in-situ mechanical properties of silt in Rellow River Delta [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(02):409-416.
[2] MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic dense sand under principal stress axes rotation [J]. Soils and Foundations, 1986, 26(1): 36-52.
[3] RABBI A, RAHMAN M M, CAMERON D A. Undrained Behavior of Silty Sand and the Role of Isotropic and K0 Consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(4):04018014.1-04018014.11.
[4] ZAMANIAN M, PAYAN M, JAFARZADEH F, et al. Evolution of dynamic properties of cross-anisotropic sand subjected to stress anisotropy [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(7): 04021048.
[5] LIAO D, YANG Z X. Hypoplastic modeling of anisotropic sand behavior accounting for rotation of principal stress direction [J]. Journal of Engineering Mechanics, 2022, 148(10): 04022060.
[6] WANG Y. K., GAOY. F., LI, L.B., et al. CAI, and A. H. Mahfouz. Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation. Acta Geotechnica 2019. 14(5): 1379-1401. doi:10.1007/s11440-018-0735-5
[7] WANG Y. K., GUOL., GAO, Y.Y. F. , et al. HU, and Y. ZhANG. Anisotropic drained deformation behavior and shear strength of natural soft marine clay. Marine Georesources and Geotechnology. 2016. 34(5): 493-502. doi:10.1080/1064119x.2015.108 1653
[8] ZHUANG H, HU X Q, GUO L, et al. Effect of initial deviatoric stress on anisotropy of marine clay during principal stress rotation [J]. Marine Georesources and Geotechnology, 2020, 40(1): 64-77.
[9] ZHUANG H, LI M F, WANG C L, et al. The effects of initial deviatoric stress on anisotropy of marine clay and strain components [J]. Marine Georesources and Geotechnology, 2020, 39(10): 1167-1176.
[10] AHMAD A., FAKHARIANK..Effect of stress rotation and intermediate stress ratio on monotonic behavior of granulated rubber-sand mixtures. Journal of Materials in Civil Engineering , 2020.,32(4):04020047.
[11] 沈扬, 梁晖, 葛华阳, 等. 主应力轴变化下各向异性钙质砂的定轴剪切特性[J]. 岩土工程学报, 2020, 42(S1): 22-26.SHEN Y, LIANG H, GE H Y, et al. Fixed-axis shear characteristics of anisotropic calcareous sand under variation of principal stress axes [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 22-26. (in Chinese)
[12] ZAMANIAN M, JAFARZADEH F. Experimental study of stress anisotropy and noncoaxiality of dense sand subjected to monotonic and cyclic loading [J]. Transportation Geotechnics, 2020, 23: 100331.
[13]YOSHIKAWATAKAHIRO, NODATOSHIHIRO, KODAKATAKSH, Effects of air coupling on triaxial shearing behavior of unsaturated silty specimens under constant confining pressure and various drained and exhausted conditions.Soils and Foundations, Volume 55, Issue 6, 2015, Pages 1372-1387, ISSN 0038-0806,https://doi.org/10.1016/j.sandf.2015.10.004.
[14] 杨迎晓,龚晓南,范川,金兴平,陈华.钱塘江冲海积非饱和粉土剪胀性三轴试验研究[J].岩土力学,2011,32(S1):38-42+94.DOI:10.16285/j.rsm.2011.s1.008.YANG YING XIAO, GONG XIAO NAN, FAN CHUAN, et al. Triaxial testing study of dilatant characteristics of Qiantangjiang alluvial unsaturated silts [J]. Rock and Soil Mechanics, 2011,32(S1):38-42+94.DOI:10.16285/j.rsm.2011.s1.008.(in Chinese)
[15] 张坤勇,李广山,梅小洪,杜伟.基于K0固结排水卸荷应力路径试验粉土应力-变形特性研究[J].岩土工程学报, 2017, 39(07):1182-1188.ZHANG KUN YONG, LI GUANG SHAN, MEI XIAO HONG, et al. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(07):1182-1188.(in Chinese)
[16] 陈存礼,马少雄,李雷雷,蔡宗鹏.饱和黄河岸滩粉土循环荷载后的变形强度特性[J].水利学报, 2014, 45(07):801-808.DOI:10.13243/j.cnki.slxb.2014.07.006.CHEN CUN LI, MA SHAO XIONG. Study on post-cyclic undrained deformation and strength characteristics of saturated silt in the floodplain of the Yellow River [J]. Journal of Hydraulic Engineering, 2014, 45(07):801-808.DOI:10.13243/j.cnki.slxb.2014.07.006.(in Chinese)
[17] 刘晖,刘建坤,邰博文,房建宏.冻融循环对含砂粉土力学性质的影响[J].哈尔滨工业大学学报, 2018, 50(03):135-142LIU HUI, LIU JIANKUN, TAI BOWEN. Mechanical properties changes of sandy silt due to freeze-thaw cycles[J]. Journal of Harbin Institute of Technology, 2018, 50(03):135-142 (in Chinese)
[18] 石兆丰,牟献友,冀鸿兰,李超,杨震,张宝森.冻融循环下黄河堤岸粉土力学特性及应力-应变归一化分析[J].干旱区资源与环境, 2021, 35(09):126-134.DOI:10.13448/j.cnki.jalre.2021.251.SHI ZHAO FENG, MOU XIAN YOU, JI HONG LAN, et al. Mechanical properties and normalized stress-strain behaviour of Yellow River embankment silt under freezing-thawing cycle [J]. Journal of Arid Land Resources and Environment, 2021, 35(09):126-134.DOI:10.13448/j.cnki.jalre.2021.251.(in Chinese)
[19] 杨庆,王猛,栾茂田,刘功勋.非饱和粉土静、动强度对比试验研究[J].岩土力学, 2010, 31(01):71-75+80.DOI:10.16285/j.rsm.2010.01.029.YANG QING, WANG MENG, LUAN MAO TIAN, et al. Experimental research of correlation on static and dynamic strength of unsaturated silty clay [J]. Rock and Soil Mechanics, 2010, 31(01):71-75+80.DOI:10.16285/j.rsm.2010.01.029.(in Chinese)
[20] DE ZHANG, QUANMING LI, LIUENLONG, et al. Bingtang Song. Dynamic properties of frozen silty soils with different coarse-grained contents subjected to cyclic triaxial loading,Cold Regions Science and Technology,Volume 157, 2019, Pages 64-85, ISSN0165-232X, https://doi.org/10.1016/j.coldregions.2018.09.010.
[21] TAO LI, JIANGMINGJING, THORNTONCOLIN.Three-dimensional discrete element analysis of triaxial tests and wetting tests on unsaturated compacted silt, Computers and Geotechnics, Volume 97, 2018, Pages 90-102,ISSN 0266-352X, https://doi.org/10.1016/j.compgeo.2017.12.011.
[22] 张俊峰,郭莹.主应力方向和初始成样含水率对饱和重塑粉土单调剪切特性的影响[J].岩土力学, 2011,32(S2):324-328+333.DOI:10.16285/j.rsm.2011.s2.027.ZHANG JUN FENG, GUO YING. Experimental research on effect of orientation of principal stress and initial sampling water content on monotonic shear behavior of saturated remolding silt [J]. Rock and Soil Mechanics, 2011, 32(S2):324328+333. DOI:10.16285/j.rsm.2011.s2.027
[23] 郭莹, 陈珍. 成样方法对饱和中砂静力三轴固结排水 剪切试验结果的影响[J]. 土木工程学报, 2010, 43(增刊 2): 306-311.UO YING, CHEN ZHEN. The influence of sample-preparing methods on experiment results of saturated medium sand in static tri-axial consolidation drained shear test[J]. China Civil Engineering Journal, 2010, 43(Supp.2): 306-311.
[24] 郭莹, 王跃新. 原状与重塑粉土固结不排水剪切特性 的对比试验研究[J]. 水利学报, 2011, 42(1): 68-75.UO YING, WANG YUE XIN. Comparative test study on consolidation un-drained shear characters of undisturbed and remolding silt[J]. Journal of Hydraulic Engineering, 2011, 42(1): 68-75.
[25] HIGHT WGENS A, SYMES M J. Development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Geotechnique, 1983, 33(4):355-383.
[26] ZDRAVKOVIC L, JARDINE R J. Some anisotropic stiffness characteristics of a silt under general stress conditions [J]. Géotechnique, 1997, 47(3): 407-437.
[27] 沈扬, 周建, 龚晓南, 等. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. 岩土力学, 2009, 30(12): 3720-3726.SHEN Y, ZHOU J, GONG X N, et al. Experimental study of stress-strain properties of intact soft clay considering the change of principal stress direction [J]. Rock and Soil Mechanics, 2009, 30(12): 3720-3726. (in Chinese)
[28] 刘红, 张吾渝, 冯永珍, 等. 不同平均主应力条件下重塑黄土的应力应变特性[J]. 土木与环境工程学报(中英文), 2021, 43(06): 57-64.LIU H, ZHANG W Y, FENG Y Z, et al. Study on stress-strain characteristics of remolded loess under different average principal stress conditions [J]. Journal of Civil and Environmental Engineering, 2021, 43(06): 57-64. (in Chinese)
[29] GEIGER E, LADE P V. Experimental study of the behavior of cohesionless soil during large stress reversals and reorientation of principal stresses. Report No. UCLA-ENG-7917, 1979.
[30] WANG Y K, GAO Y F, GUO L, et al. Influence of intermediate principal stress and principal stress direction on drained behavior of natural soft Clay [J]. International Journal of Geomechanics, 2018, 18(1): 04017128.
[31] 管林波,周建,张勋,谢新宇.中主应力系数和主应力方向对原状黏土各向异性的影响研究[J].岩石力学与工程学报, 2010, 29(S2):3871-3877.UAN LIN BO, ZHOU JIAN, ZHANG XUN, et al. Study of influence of parameters of intermediate principal stress and principal stress direction on anisotropy of intace clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2):3871-3877.
[32] 郭林, 王钰轲, 王军, 等. 中主应力与大主应力方向角对软黏土排水变形特性影响[J]. 岩土力学, 2016, 37(05): 1380-1387.GUO L, WANG Y K, WANG J, et al. Influence of intermediate principal stress and major principal stress direction on the drainage-induced deformation of soft clay [J]. Rock and Soil Mechanics, 2016, 37(05): 1380-1387. (in Chinese)
[33] 熊焕. 考虑应力主轴变化下各向异性砂土静动力特性试验研究[D].浙江大学,2015.XIONG H. Experimental study on the static and dynamic Behavior of anisotropic sands involving rotation of principal stress axes [D]. Zhejiang University, 2015. (in Chinese)