基于可靠度理论的中低速磁浮车-桥系统轨道梁动力系数研究
CSTR:
作者:
作者单位:

长沙理工大学

基金项目:

国家自然科学基金资助项目(52208459, 52178452);湖南省自然科学(2022JJ40496);中国博士后科学(2022M723004);长沙理工大学桥梁工程安全控制教育部重点实验室开放基金资助项目(22KB02)。


Study on Dynamic Factors of the Guideway Beam of Low and Medium Speed Maglev Vehicle-Bridge System based on reliability theory
Author:
Affiliation:

1.Changsha University of Science &2.Technology

Fund Project:

National Natural Science Foundation of China (No. 52208459, 52178452); Natural Science Foundation of Hunan Province (No. 2022JJ40496); China Postdoctoral Science Foundation (No. 2022M723004); Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science & Technology) (No. 22KB02).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    受轨道不平顺影响,磁浮车辆运行时轨道梁动力系数具有明显的不确定性。为准确计算轨道梁动力系数,首先建立了由磁浮车辆、简支梁桥、悬浮控制系统组成的中低速磁浮列车-桥梁竖向耦合振动模型。其次,结合正交随机函数思想和数论选点理论,发展了轨道不平顺降维模拟方法,使得对不平顺代表样本的模拟仅需两个随机变量。最后,基于概率密度演化理论和等价极值原理,提出了轨道梁动力可靠性评估方法,该方法能准确获取动力系统的概率密度函数、累积分布函数以及轨道梁的动力可靠度。数值算例以长沙中低速磁浮线路为背景,通过将现场实测结果和蒙特卡罗法对比,验证了本文计算方法的可靠性。进一步地,探讨了车速、车重和轨道不平顺粗糙度对轨道梁动力系数和可靠度的影响。结果表明:60~140 km/h车速范围内,轨道梁动力可靠度计算结果均为1,但由于车速80 km/h时车辆荷载主频与轨道梁竖向振动基频接近,使得该车速下动力系数数值和离散性最大;轨道梁动力系数随车体质量的增加而减小;轨道不平顺粗糙度对轨道梁动力系数影响显著,若要求轨道梁动力可靠度计算结果为1,轨道不平顺幅值应控制在5.03 mm以内。

    Abstract:

    Affected by the randomness of track irregularity, the dynamic factor of the guideway beam caused by the maglev vehicle has obvious uncertainty. In order to accurately calculate the reliability of dynamic factors of the guideway beam, a vertical coupling vibration model of the medium and low speed maglev train-bridge system was established, which was composed of the maglev vehicle, the simply supported girder and the suspension control system. Then, combined with the idea of orthogonal random function and the strategy of selecting points via number theoretic method, the reduced dimension simulation method of track irregularity was developed, by which only two random variables were needed to simulate the representative samples of the track irregularity. Finally, based on the probability density evolution method and the equivalent extreme-value principle, a reliability evaluation method for the guideway beam was proposed, by which the probability density function, cumulative distribution function of the dynamic system and the dynamic reliability of the guideway beam can be accurately obtain. The Changsha low-medium speed maglev line, as a case study, was numerically analyzed. The reliability of the calculation model was verified by comparing with the results of field measurement and Monte Carlo method. Furthermore, the effects of vehicle speed, vehicle weight and track irregularity roughness on the dynamic factors and reliability of the guideway beam were discussed. The results indicate that the reliability of the guideway beam is 1 within the speed range of 60 to 140 km/h. However, since the dominant frequency of the vehicle load is approaching to the basic frequency of the vertical vibration of the guideway beam at the speed of 80 km/h, which makes the value and dispersion of the dynamic factors at this speed the largest. The dynamic factors of the guideway decrease as the weight of vehicle increases. In addition, the track irregularity roughness has a significant impact on the dynamic factors of the guideway beam. If the reliability of the guideway beam is required to be 1, the track irregularity amplitude should be controlled within 5.03 mm.

    参考文献
    [1] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述 [J]. 交通运输工程学报, 2021, 21(01): 199-216.A Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle [J]. Journal of Traffic and Transportation Engineering, 2021, 21(01): 199-216.
    [2] 王党雄, 李小珍, 梁林. 中低速磁浮列车-桥梁系统竖向耦合振动理论分析与试验验证 [J]. 土木工程学报, 2019, 52(08): 81-90.ang Dangxiong, Li Xiaozhen, Liang lin. Theoretical analysis and experimental verification of the vertical coupling vibration of low-to-medium speed maglev train-bridge system [J]. CHINA CIVIL ENGINEERING JOURNAL, 2019, 52(08): 81-90.
    [3] 王亚朋, 蔺鹏臻. 中低速磁悬浮双线简支轨道梁的冲击效应研究 [J]. 铁道学报, 2021, 43(04): 77-84.ANG Yapeng, LIN Pengzhen. Study on Impact Effect of Double-track Simply Supported Track Beams for Medium and Low Speed Maglev [J]. JOURNAL OF THE CHINA RAILWAY SOCIETY, 2021, 43(04): 77-84.
    [4] 苗永抗, 尹邦武, 郭向荣. 考虑徐(温)变效应的列车与连续梁-框架墩桥耦合振动分析 [J]. 铁道科学与工程学报, 2013, 10(02): 5-10.IAO Yongkang, YIN Bangwu, GUO Xiangrong. Vehicle-bridge coupling vibration analysis of continuous beam-framework pier bridge considering concrete creep and temperature deformation [J]. JOURNAL OF RAILWAY SCIENCE AND ENGINEERING, 2013, 10(02): 5-10.
    [5] 周勇军, 薛宇欣, 李冉冉, 等. 桥梁冲击系数理论研究和应用进展 [J]. 中国公路学报, 2021, 34(04): 31-50.HOU Yongjun, XUE Yuxin, LI Ranran, et al. State-of-the-art of Theory and Applications of Bridge Dynamic Load Allowance [J]. China J. Highw. Transp. 2021, 34(04): 31-50.
    [6] 周勇军, 赵洋, 赵煜, 等. 基于动载试验荷载效率的简支梁桥冲击系数研究 [J]. 振动与冲击, 2021, 40(20): 207-216.HOU Yongjun, ZHAO Yang, ZHAO Yu, et al. A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test [J]. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(20): 207-216.
    [7] 谢华, 周永礼. 浅谈中低速磁浮常用跨度梁设计 [J]. 四川建筑, 2018, 38(03): 191-3.IE Hua, ZHOU Yongli. Discussion on the Design of Common Span Beams for Medium and Low Speed Maglev [J]. Sichuan Architecture, 2018, 38(03): 191-3.
    [8] Lee Jun-Seok, Soon-DuckKwon, Kim Moon-Young, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges [J]. Journal of Sound and Vibration, 2009, 328(3): 301-17.
    [9] 杨平, 刘德军, 李小珍. 中低速磁浮简支轨道梁动力系数研究 [J]. 桥梁建设, 2016, 46(04): 79-84.ANG Ping, LIU Dejun, LI Xiaozhen. Investigation of Dynamic Factors of Low and Medium Speed Maglev Simply-Supported Guideway Beam [J]. Bridge Construction, 2016, 46(04): 79-84.
    [10] 敖建安, 魏高恒, 马卫华, 等. 轨道精度对中低速磁浮列车-轨排-桥梁动力作用影响 [J]. 铁道科学与工程学报, 2020, 17(11): 2738-47.O Jianan, WEI Gaoheng, MA Weihua, et al. Influence of geometry accuracy of track structure on dynamic performance of the coupled medium-low speed maglev train-rail-bridge system [J]. Journal of Railway Science and Engineering, 2020, 17(11): 2738-47.
    [11] 朱志辉, 赵婷婷, 王力东, 等. 基于随机振动模型的重载铁路拱桥吊杆应力冲击系数研究 [J]. 振动工程学报, 2017, 30(06): 955-64.HU Zhihui, ZHAO Tingting, WANG Lidong, et al. Stress impact factor of the suspenders of heavy-haul railway arch bridge based on random vibration model [J]. Journal of Vibration Engineering, 2017, 30(06): 955-64.
    [12] 姜金凤. 基于概率密度演化理论的尼尔森体系拱桥吊杆应力冲击系数研究 [J]. 铁道科学与工程学报, 2021, 18(09): 2350-7.IANG Jinfeng. Study on stress impact factor of suspenders of Nielsen system arch bridge based on probability density evolution method [J]. Journal of Railway Science and Engineering, 2021, 18(09): 2350-7.
    [13] 徐文涛, 廖敬波, 张泽通, 等. 基于参数识别的桥梁冲击系数随机响应优化方法 [J]. 机械工程学报, 2018, 54(12): 64-70.U Wentao, LIAO Jingbo, ZHANG Zetong, et al. Numerical Method Study of Key Factor Identification and Parameter Optimization for Dynamic Impact on Bridge Based on the Pseudo-excitation Method [J]. JOURNAL OF MECHANICAL ENGINEERING, 2018, 54(12): 64-70.
    [14] Wang Dangxiong, Li Xiaozhen, Liang Lin, et al. Dynamic interaction analysis of bridges induced by a low-to-medium–speed maglev train [J]. Journal of Vibration and Control, 2020, 26(21-22): 2013-25.
    [15] 陈琛, 徐俊起, 林国斌, 等. 具有径向基网络加速度反馈的磁浮列车悬浮系统滑模控制 [J]. 同济大学学报(自然科学版), 2021, 49(12): 1642-51.HEN Chen, XU Junqi, LIN Guobin, et al. Sliding Mode Control of Maglev Train Suspension System with Neural Network Acceleration Feedback [J]. JOURNAL OF TONGJI UNIVERSITY(NATURAL SCIENCE) 2021, 49(12): 1642-51.
    [16] Wang Lidong, Zhang Xun, Liu Hanyun, et al. Global reliability analysis of running safety of a train traversing a bridge under crosswinds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224: 104979.
    [17] Liu Zhangjun, Liu Zenghui, Peng Yongbo. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods [J]. Journal of Sound and Vibration, 2018, 418: 144-62.
    [18] Li Jie, Chen Jian-bing, Fan Wen-liang. The equivalent extreme-value event and evaluation of the structural system reliability [J]. Structural Safety, 2007, 29(2): 112-31.
    [19] Zhao C. F., Zhai W. M. Maglev Vehicle/Guideway Vertical Random Response and Ride Quality [J]. Vehicle System Dynamics, 2002, 38(3): 185-210.
    [20] Wang Dangxiong, Li Xiaozhen, Wang Yuwen, et al. Dynamic interaction of the low-to-medium speed maglev train and bridges with different deflection ratios: Experimental and numerical analyses [J]. Advances in Structural Engineering, 2020, 23(11): 2399-413.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-01
  • 最后修改日期:2023-04-12
  • 录用日期:2023-04-21
文章二维码