强效电化学-臭氧耦合工艺的渗滤液深度处理特性
CSTR:
作者:
作者单位:

1.西安建筑科技大学安德学院;2.西安建筑科技大学资源工程学院;3.西安交通大学人居环境与建筑工程学院

基金项目:

国家自然科学基金面上项目(52070151);国家自然科学基金面上项目(52170052);陕西省重点研发计划(2021ZDLSF05-06)


Leachate Advanced Treatment Characteristics of Powerful Electrochemical-Ozone Coupling Process
Author:
Affiliation:

1.Xi'2.'3.an University of Architecture and Technology XAUAT UniSA An De College;4.an University of Architecture and Technology School of Resources Engineering;5.an Jiaotong University School of Human Settlement Environment and Civil Engineering

Fund Project:

National Natural Science Foundation of China (No. 52070151, 52170052); Key Research and Development Project of Shaanxi Province(2021ZDLSF05-06)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以垃圾渗滤液二级出水非膜法深度处理为目的,本文构建了以复合式阴极和形稳阳极为核心的强效电化学反应单元,其中复合式阴极由磁铁棒、碳毡和铁粉组成,起到Fe2+的析出和渗滤液中硝态氮的还原,形稳阳极为商用Ti/RuO2-IrO2电极,起到活化渗滤液中Cl-,产生活性氯,氧化去除渗滤液中氨氮和有机物的作用,并将二者的强效电化学反应与臭氧氧化作用于同一单元,构建了强效电化学-臭氧耦合工艺,以此强化渗滤液二级出水有机物和总氮的去除。结果表明耦合工艺在电流强度为1.5 A,初始pH为7,铁粉吸附密度为0.42 g/cm2,臭氧投加量为4.58 mg/min时,对COD及TN的去除率分别为46.5%和79.81%。通过红外光谱(FT-IR)、电子顺磁共振波谱(EPR)、循环伏安曲线(CV)探究了工艺对有机物反去除机理,结果表明,耦合工艺中产生了·OH与·Cl多种活性物质,强化了渗滤液中脂肪族、酯、醚、酚等有机物的去除,提高了渗滤液的可生化性。耦合工艺与SBR小型生化系统联用后出水达到《生活垃圾填埋场污染控制标准》(GB 16889—2008)要求。

    Abstract:

    In order to achieve the purpose of non-membrane advanced treatment of landfill leachate secondary effluent, a powerful electrochemical reaction unit is constructed with a composite cathode and a dimensionally stable anode (DSA) as the core. The composite cathode is synthesized from carbon felt and iron powder by magnetic adsorption. The composite cathode would precipitate iron-based coagulants and reduce nitrate nitrogen in the leachate. The anode is a Ti/RuO2-IrO2 electrode, which can activate Cl- in the leachate to generate active chlorine and oxidize and remove ammonia nitrogen in the leachate. The powerful electrochemical reaction and ozone oxidation is applied in the same unit, and a powerful electrochemical-ozone coupling process is constructed to strengthen the removal of organic matter and total nitrogen in the secondary effluent of the leachate. The results show that when the current intensity is 1.5 A, the initial pH is 7, the adsorption density of iron powder is 0.42 g/cm2, and the ozone dosage is 4.58 mg/min, the removal rate of COD is 46.5%, and the removal rate of TN is 79.81%. Through infrared spectroscopy (FT-IR), electron paramagnetic resonance spectroscopy (EPR), and cyclic voltammetry (CV), the reaction mechanism of the process for the removal of organics was explored. The results showed that ·OH and ·Cl were generated in the coupled process system. A variety of active substances enhance the removal of aliphatic, ester, ether, phenol and other organic substances in the leachate. After the coupling process is combined with the small SBR biochemical system, the effluent meets the requirements of the "Standards for Pollution Control of Domestic Waste Landfills" (GB 16889-2008).

    参考文献
    [1] TENG C, ZHOU K, Peng C, et al. Characterization and treatment of landfill leachate: A review[J]. Water research, 2021, 203: 117525.
    [2] MOJIRI A, ZHOU J L, RATNAWEERA H, et al. Treatment of landfill leachate with different techniques: an overview[J]. Journal of Water Reuse and Desalination, 2021, 11(1): 66-96.
    [3] SANGUANPAK S, CHIEMCHAISRI W, CHIEMCHAISRI C. Membrane fouling and micro-pollutant removal of membrane bioreactor treating landfill leachate[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(4): 715-740.
    [4] 张亚通, 朱鹏毅, 朱建华,等. 垃圾渗滤液膜截留浓缩液处理工艺研究进展[J]. 工业水处理, 2019, 39(09): 18-23.ZHANG Y T, ZHU P Y, ZHU J H, et al. Evolution of the treatment for membrane filtration concentrate of landfill leachate [J]. Industrial Water Treatment, 2019, 39(09): 18-23. (in Chinese)
    [5] GUO Z, ZHANG Y, JIA H, et al. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation[J]. Science of The Total Environment, 2022, 806: 150529.
    [6] YU H, DOU D, ZHAO J, et al. The exploration of Ti/SnO2-Sb anode/air diffusion cathode/UV dual photoelectric catalytic coupling system for the biological harmless treatment of real antibiotic industrial wastewater[J]. Chemical Engineering Journal, 2021, 412: 128581.
    [7] BERNAL L A, BARRERA-DÍAZ C, NATIVIDAD R, et al. Effect of the continuous and pulse in situ iron addition onto the performance of an integrated electrochemical–ozone reactor for wastewater treatment[J]. Fuel, 2013, 110: 133-140.
    [8] 谢新月, 许建军, 张少华, 等. 电凝聚臭氧化耦合工艺的有机物处理特性及去除机制解析[J]. 环境科学, 2021, 42(02): 883-890.XIE X Y, XU J J, ZHANG S H, et al. Characteristics and removal Mechanism of an Electro-Hybrid Ozonation-Coagulation System in the Treatment of Organic Matters [J]. Environmental Science, 2021, 42(02): 883-890. (in Chinese)
    [9] 刁悦, 杨超, 金鑫, 等. 芬顿阴极-电凝聚臭氧气浮工艺处理 MBR 出水特性[J]. 中国环境科学, 2022, 42(2): 728-735.DIAO Y, YANG C, JIN X, et al. Treatment of effluent from MBR by Fenton cathode-electrocoagulation ozone air flotation process [J]. China Environmental Science, 2022, 42(2): 728-735. (in Chinese)
    [10] BASHIR M J K, ISA M H, KUTTY S R M, et al. Landfill leachate treatment by electrochemical oxidation[J]. Waste Management, 2009, 29(9): 2534-2541.
    [11] 张华, 罗臻, 张晓飞, 等. 页岩气钻井废水电絮凝预处理实验[J]. 天然气工业, 2019, 39(12): 146-154.ZHANG H, LUO Z, ZHANG X F, et al. Electro-flocculation pretreatment experiments of shale gas drilling wastewater [J]. Natural gas industry, 2019, 39(12): 146-154. (in Chinese)
    [12] POCOSTALES J P, SEIN M M, KNOLLE W, ET AL. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter[J]. Environmental science & technology, 2010, 44(21): 8248-8253.
    [13] 毛雯雯. 臭氧投加量与 CuO 催化剂对垃圾渗滤液预氧化影响的研究[D]. 河南师范大学, 2015.MAO W W. Study on the Influence of Ozone dosage and catalyst to the effect of pre-oxidation of Landfill leachate [D]. School of Henan Normal University, 2015. (in Chinese)
    [14] GHERNAOUT D, ELBOUGHDIRI N. Electrocoagulation Process Intensification for Disinfecting Water—A Review[J]. Applied Engineering, 2019, 3: 140-147.
    [15] TURKAY O, ERSOY Z G, BARIŞÇI S. The application of an electro-peroxone process in water and wastewater treatment[J]. Journal of the Electrochemical Society, 2017, 164(6): E94.
    [16] BAKHEET B, YUAN S, LI Z, et al. Electro-peroxone treatment of Orange II dye wastewater[J]. Water research, 2013, 47(16): 6234-6243.
    [17] WANG C, ZHANG Y, LUO H, et al. Iron‐Based Nanocatalysts for Electrochemical Nitrate Reduction[J]. Small Methods, 2022: 2200790.
    [18] WANG X, ZHU M, ZENG G, et al. A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction[J]. Nanoscale, 2020, 12(17): 9385-9391.
    [19] JUNG E, SHIN H, HOOCH ANTINK W, et al. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design[J]. ACS Energy Letters, 2020, 5(6): 1881-1892.
    [20] HUANG X, ZHANG Y, BAI J, ET AL. Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system[J]. Chemical Engineering Journal, 2020, 392: 123695.
    [21] WANG Y J, ZHAO N, FANG B, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity[J]. Chemical reviews, 2015, 115(9): 3433-3467.
    [22] 席北斗, 魏自民, 赵越, 等. 垃圾渗滤液水溶性有机物荧光谱特性研究[J]. 光谱学与光谱分析, 2008, 28(11): 2605-2608.XI B D, WEI Z M, ZHANG Y, et al. Study on Fluorescence Characteristic of Dissolved Organic Matter from Municipal Solid Waste Landfill Leachate [J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2605-2608. (in Chinese)
    [23] ZHENG W, ZHU L, LIANG S, et al. Discovering the importance of ClO• in a coupled electrochemical system for the simultaneous removal of carbon and nitrogen from secondary coking wastewater effluent[J]. Environmental Science & Technology, 2020, 54(14): 9015-9024.
    [24] CHEN J, PEHKONEN S O, LIN C J. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters[J]. Water Research, 2003, 37(10): 2496-2504.
    [25] MESQUITA D P, QUINTELAS C, AMARAL A L, et al. Monitoring biological wastewater treatment processes: recent advances in spectroscopy applications[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(3): 395-424.
    [26] 赵庆良, 张静, 卜琳. Fenton 深度处理渗滤液时 DOM 结构变化[J]. 哈尔滨工业大学学报, 2010 (6): 977-981.ZHAO Q L, ZHANG J, BU L. Structural transformation of dissolved organic matters in leachate after advanced Fenton treatment [J]. Journal of Harbin Institute of Technology, 2010 (6): 977-981. (in Chinese)
    [27] 高璟, 闫俊娟, 刘有智, 等. 形稳阳极 Ti/IrO2-Ta2O5 电 Fenton 法催化降解含酚废水[J]. 含能材料, 2017, 25(10): 866-872.GAO J, YAN J J, LIU Y Z. Degradation of Phenol Wastewater by Electro-Fenton Method with Dimensionally Stable Anode of Ti / IrO2-Ta2O [J]. Chinese Journal of Energetic Materials, 2017, 25(10): 866-872. (in Chinese)
    [28] MANDAL P, YADAV M K, GUPTA A K, et al. Chlorine mediated indirect electro-oxidation of ammonia using non-active PbO2 anode: Influencing parameters and mechanism identification[J]. Separation and Purification Technology, 2020, 247: 116910.
    [29] MOOK W T, CHAKRABARTI M H, AROUA M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review[J]. Desalination, 2012, 285: 1-13.
    [30] CAPODAGLIO A G, HLAVÍNEK P, RABONI M. Physico-chemical technologies for nitrogen removal from wastewaters: a review[J]. Revista ambiente & agua, 2015, 10: 481-498.
    [31] SOARES O, ORFAO J J M, RUIZ-MARTINEZ J, et al. Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures[J]. Chemical Engineering Journal, 2010, 165(1): 78-88.
    [32] GB16889—2008. 生活垃圾填埋场污染控制标准 [S][D].GB16889—2008. Standard for Pollution Control of Domestic Waste Landfill [S][D]. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:173
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-08
  • 最后修改日期:2023-02-13
  • 录用日期:2023-02-15
文章二维码