不同含水率花岗岩残积土-格栅界面循环剪切特性
CSTR:
作者:
作者单位:

1.广州环保投资集团有限公司;2.上海大学/ 力学与工程科学学院;3.上海大学/力学与工程科学学院;4.广州环投增城环保能源有限公司

基金项目:

国家自然科学基金资助项目(52078285,51878402)


Cyclic Shear Characteristics of Granite Residual Soil-geogrid Interface with Different Water Content
Author:
Affiliation:

1.Guangzhou Environmental Protection Investment Group Co., Ltd.;2.Shanghai University/ School of Mechanics and Engineering Science;3.Shanghai University/School of Mechanics and Engineering Science;4.GZEPI Zhengcheng Environmental Protection Energy Co., Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    含水率对土工格栅加筋的花岗岩残积土力学特性影响较大,为研究不同含水率下花岗岩残积土-格栅界面循环剪切特性,通过室内大型直剪仪开展了一系列循环剪切试验,分析了4种含水率(13%、19%、25%、32%)、3种竖向应力(50、100、150kPa)、4种剪切频率(0.2、0.5、1、2Hz)和4种剪切幅值(5、10、15、20mm)条件下筋土界面的剪应力-剪切位移曲线、抗剪强度、剪切刚度、体积应变等。试验结果表明:含水率为32%时土体饱和,筋土界面峰值剪应力和剪切刚度在循环剪切过程中先增加后降低,50、100、150kPa竖向应力作用下峰值剪应力初始增幅分别为6.2%、22.3%、33.0%,表明竖向应力越大筋土界面初期增幅越大,而非饱和含水率下筋土界面呈现剪切软化特征;竖向应力为50kPa时,筋土界面在含水率为25%时达到抗剪强度峰值,竖向应力为100kPa、150kPa时,筋土界面循环抗剪强度与含水率呈负相关,降幅为35.47%、43.17%;筋土界面在循环剪切作用下发生剪缩,含水率为13%、19%、25%、32%时筋土界面最终剪缩量分别为4.6、7.7、8.6、7.2mm,表明剪缩量随着含水率的升高先增大后减小;各含水率下,筋土界面最大剪切刚度随剪切频率的升高先降低后增大,随剪切幅值的增大而减小,0.5Hz的剪切频率对筋土界面剪切刚度弱化作用最强。

    Abstract:

    Water content has a great influence on the mechanical properties of granite residual soil reinforced with geogrids. In order to study the cyclic shear characteristics of granite residual soil-geogrid interface under different water content, a series of cyclic shear tests were carried out by large indoor direct shear apparatus. The shear stress-shear displacement curves, shear strength, shear stiffness and volume of the soil-reinforced interface were analyzed under four kinds of water content (13%, 19%, 25%, 32%), three kinds of normal stress (50, 100, 150kPa), four kinds of shear frequency (0.2, 0.5, 1, 2Hz) and four kinds of shear amplitude (5, 10, 15, 20mm). The test results show that: When the soil is saturated with water content of 32%, the peak shear stress and shear stiffness of the interface increase first and then decrease during the cyclic shearing process. The initial increase of the peak shear stress under the normal stress of 50, 100 and 150kPa is 6.2%, 22.3% and 33.0%, respectively, indicating that the increase of the normal stress is greater than that of the interface at the initial stage. Under unsaturated water content, the interface of soil-reinforced soil shows shear softening characteristics. When the normal stress is 50kPa, the shear strength of the interface reaches the peak value when the water content is 25%. When the normal stress is 100kPa and 150kPa, the cyclic shear strength of the interface is negatively correlated with the water content, decreasing by 35.47% and 43.17%. When the water content is 13%, 19%, 25% and 32%, the final shear shrinkage of the interface is 4.6, 7.7, 8.6 and 7.2mm, respectively, indicating that the shear shrinkage increases first and then decreases with the increase of water content. At each water content, the maximum shear stiffness of the interface decreases first and then increases with the increase of shear frequency, and decreases with the increase of shear amplitude. The shear frequency of 0.5Hz has the strongest weakening effect on the interface shear stiffness of the interface.

    参考文献
    [1] ZENG Z X, KONG L W, WANG M, et al. Assessment of the engineering behaviour of an intensely weathered swelling mudstone under the full range of seasonal variation and the relationships among the measured parameters[J]. Canadian Geotechnical Journal, 2018, 55(12): 1837–1849.
    [2] ABU-FARSAKH M, CORONEL J, TAO M. Effect of soil moisture content and dry density on cohesive soil–geosynthetic interactions using large direct shear tests[J]. Journal of Materials in Civil Engineering, 2007, 19(7): 540–549.
    [3] FERREIRA F B, VIEIRA C S, LOPES M L. Direct shear behaviour of residual soil–geosynthetic interfaces-influence of soil moisture content, soil density and geosynthetic type[J]. Geosynthetics International, 2015, 22(3): 257-272.
    [4] FERRIRA F B, VIEIRA C S, LOPES M L. Pullout behavior of different geosynthetics-influence of soil density and moisture content. Frontiers in Built Environment[J], 2020, 6(12).
    [5] HATAMI K, ESMAILI D. Unsaturated soil–woven geotextile interface strength properties from small-scale pullout and interface tests[J]. Geosynthetics International, 2015, 22(2): 161–172.
    [6] NAMJOO A M, SOLTANI F, TOUFIGH V. Effects of moisture on the mechanical behavior of sand-geogrid: an experimental investigation[J]. International Journal of Geosynthetics and Ground Engineering, 2021, 7, 5.
    [7] BERGADO D T, RAMANA G V, SIA H I, et al. Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand[J]. Geotextiles and Geomembranes, 2016, 24(6): 371-393.
    [8] 刘飞禹, 朱晨, 王军. 剪切速率和法向加载频率对筋土界面剪切特性的影响[J]. 岩土工程学报, 2021, 43(05):832-840.IU F Y, Zhu C, WANG J. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(05): 832-840.
    [9] 刘飞禹, 胡惠丽, 王军, 等. 粒孔比对筋-土界面循环剪切特性的影响[J]. 中国公路学报, 2019, 32(12): 115-122+131.IU F Y, HU H L, WANG J, et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface[J]. China Journal of Highway and Transport, 2019, 32(12): 115-122+131.
    [10] 应梦杰, 王军, 刘飞禹. 循环剪切作用下砾石-格栅界面颗粒破碎特性研究[J]. 岩石力学与工程学报, 2021, 40(07): 1484-1490.ING M J, WANG J, LIU F Y. Experimental study on particle breakage of gravel-geogrid interfaces under cyclic shear[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(07): 1484-1490.
    [11] 徐超, 陈洪帅, 石志龙等. 筋-土界面力学特性的水平循环剪切试验研究[J]. 岩土力学, 2013, 34(06): 1553-1559.U C, CHEN H S, SHI Z L, et al. Research on the mechanical behavior of soil-reinforcement interface by horizontal cyclic shear test[J]. Rock and Soil Mechanics, 2013, 34(06): 1553-1559.
    [12] FERREIRA F, VIEIRA C, LOPES M L. Cyclic and post-cyclic shear behaviour of a granite residual soil-geogrid interface[J]. Procedia Engineering, 2016, 143: 379-386.
    [13] 周斌, 邵迟. 花岗岩残积土-土工格栅界面的后循环剪切行为研究[J]. 水利与建筑工程学报, 2017, 15(01): 90-94.HOU B, SHAO C. Post Cyclic interface shear behavior of granite residual soil-geotechnical grille[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(01): 90-94.
    [14] CEN W J, BAUER E, WEN L S, et al. Experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and sandy gravel[J]. Geotextiles and Geomembranes, 2019,47(2): 269–279.
    [15] CEN W J, WANG H, YU L, et al. Response of high-density polyethylene geomembrane–sand Interfaces under cyclic shear loading: laboratory investigation[J]. International Journal of Geomechanics, 2020, 20(2): 04019166.
    [16] REZA A, REZA J C. Cyclic and post-cyclic shear behaviour of interface between geogrid and EPS beads-sand backfill[J]. KSCE Journal of Civil Engineering, 2018, 22: 3340-3357.
    [17] NYE C J, FOX P J. Dynamic Shear behavior of a needle-punched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 973–983.
    [18] WANG J, LIU F Y, WANG P, et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests[J]. Geotextiles and Geomembranes, 2016, 44(6): 854–861.
    [19] WANG J, LIU F Y, ZHENG Q T, et al. Effect of aperture ratio on the cyclic shear behavior of aggregate-geogrid interfaces[J]. Geosynthetics International, 2021,28(2): 158-173.
    [20] .刘飞禹, 江淮, 王军. 砾石-格栅界面循环剪切软化特性试验研究[J]. 岩土力学, 2021, 42(06):1485-1492.LIU F Y, JIANG H, WANG J. Experimental study on cyclic shear softening characteristics of gravel-geogrid interface[J]. Rock and Soil Mechanics, 2021, 42(06): 1485-1492
    [21] 刘飞禹, 王攀, 王军等. 不同剪切速率下格栅-土界面循环剪切及其后直剪特性[J]. 岩石力学与工程学报, 2016, 35(02): 387-395.IU F Y, WANG P, WANG J, et al. Cyclic and post-cyclic shear behavior of sand-geogrid interface under different shear rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(02): 387-395.
    [22] LIU F Y, YING M J, YUAN G H, et al. Particle shape effects on the cyclic shear behaviour of the soil-geogrid interface[J]. Geotextiles and Geomembranes, 2021, 49(4): 991-1003.
    [23] YING M J, LIU F Y, WANG J, et al. Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil-geogrid interface[J]. Transportation Geotechnics, 2021, 27: 100504.
    [24] CHANG J Y, FENG S J. Dynamic shear behaviors of textured geomembrane/nonwoven geotextile interface under cyclic loading[J]. Geotextiles and Geomembranes, 2020, 49 (2): 388–398.
    [25] VIEIRA C S, LOPES M L, CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International, 2013, 20(1): 26–38.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:163
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-03
  • 最后修改日期:2023-04-16
  • 录用日期:2023-04-21
文章二维码