基于AK-FORM方法和降维方法的高效时变可靠度方法
CSTR:
作者:
作者单位:

1.国网河南省电力公司经济技术研究院;2.重庆大学土木工程学院


An efficient time-varying reliability method based on AK-FORM method and dimension reduction method
Author:
Affiliation:

1.State Grid Henan Electric Power Company;2.School of Civil Engineering, Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    PHI2方法是进行结构时变可靠度分析的常用方法,而跨越率的求解是该方法的关键,为达到足够精度往往需要计算大量时刻处的跨越率。然而,对于具有复杂极限状态面的实际问题,计算每个时刻的跨越率可能是非常耗时的。为进一步提高PHI2方法的效率,本文拟引入三种策略改进跨越率的计算效率:首先,采用无Cholesky分解策略以减少随机变量数目,同时给出与之对应的相关系数计算方法;其次,引入基于主动学习Kriging模型的改进一次可靠度(AK-FORM)方法以高效计算各时刻的可靠指标;最后,利用降维方法将二维积分转化为一维积分以改善计算性能。将上述三种改进策略与PHI2方法相结合,即形成了基于AK-FORM方法和降维方法的高效时变可靠度分析方法,即K-PHI2方法。与此同时,仅将无Cholesky分解策略与PHI2方法结合形成了PHI2-方法。数值算例和工程算例的计算结果表明:本文提出的PHI2-、K-PHI2方法与PHI2方法一样具有高准确性,在精度上均优于PHI2+方法(一种基于PHI2的改进方法);相较于PHI2、PHI2+方法,PHI2-方法在效率上有了一定提升,而K-PHI2方法在此基础上进一步极大地提高了时变可靠度分析效率。

    Abstract:

    The PHI2 method is commonly used to perform the time-varying structural reliability analysis, and the calculation of outcrossing rate is the key to the method, to achieve sufficient accuracy it is often necessary to calculate the outcrossing rate at a large number of moments. However, for practical problems with complex limit state surfaces, the calculation of the outcrossing rate at each moment can be very time-consuming. To further improve the efficiency of PHI2 method, three strategies are proposed to be introduced in this paper to improve the efficiency of calculating outcrossing rate. First, the strategy without Cholesky decomposition is used to reduce the number of random variables, while the corresponding calculation of correlation coefficients is given. Then, the improved first order reliability method based on adaptive Kriging model (AK-FORM) is introduced to efficiently calculate the reliability index at each moment. Finally, the two dimensional integral is converted into one dimensional integral by using the dimension reduction method. The above three improvement strategies are combined with the PHI2 method, which forms an efficient time-varying reliability analysis method based on the AK-FORM method and the dimension reduction method, i.e., the K-PHI2 method. Meanwhile, only the strategy without Cholesky decomposition is combined with the PHI2 method to form the PHI2- method. The calculation results of numerical and engineering examples show that the PHI2- and K-PHI2 methods proposed in this paper have the same high accuracy as the PHI2 method, and both are better than the PHI2+ method (an improved method based on PHI2) in terms of accuracy; compared with the PHI2 and PHI2+ methods, the PHI2- method has a little improvement in efficiency, while the K-PHI2 method further greatly improves the efficiency of time-varying reliability analysis on this basis.

    参考文献
    [1] YANG M, ZHANG D, HAN X. New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366(7): 113018.
    [2] 范文亮, 刘丞, 李正良. 基于HLRF法与修正对称秩1方法的改进可靠度方法[J]. 工程力学. 2022, 39(9): 1-9.Fan W L, LIU C, LI Z L. Improved reliability method based on HLRF and modified symmetric rank 1 method[J]. Engineering Mechanics. 2022, 39(9): 1-9. (in Chinese)
    [3] JIANG C, WEI X P, WU B, et al. An improved TRPD method for time-variant reliability analysis[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 1935-1946.
    [4] ZAFAR T, WANG Z. An efficient method for time-dependent reliability prediction using domain adaptation[J]. Structural and Multidisciplinary Optimization, 2020, 62(7): 2323–2340.
    [5] JIANG C, HU Z, LIU Y X, et al. A sequential calibration and validation framework for model uncertainty quantification and reduction[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 368(8): 113172.
    [6] WU J, ZHANG D, JIANG C, et al. On reliability analysis method through rotational sparse grid nodes[J]. Mechanical Systems and Signal Processing, 2021, 147(1): 107106.
    [7] HAWCHAR L, SOUEIDY C PEL, SCHOEFS F. Principal component analysis and polynomial chaos expansion for time-variant reliability problems[J]. Reliability Engineering & System Safety, 2017, 167(11): 406-416.
    [8] YU S, ZHANG Y W, LI Y, et al. Time-variant reliability analysis via approximation of the first-crossing PDF[J]. Structural and Multidisciplinary Optimization, 2020, 62(7): 2653-2667.
    [9] 唐和生,郭雪媛,薛松涛.基于广义子集模拟和自适应Kriging模型的非线性随机动力系统的时变可靠性分析[J]. 振动与冲击, 2021, 40(21): 47-54.TANG H S, GUO X Y, XUE S T. Time-varying reliability analysis of nonlinear stochastic dynamic systems based on generalized subset simulation and adaptive Kriging model[J]. Journal of Vibration and Shock, 2021, 40(21): 47-54. (in Chinese)
    [10] HU Z, DU X. A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis[J]. Journal of Mechanical Design, 2013, 135(7): 071003.
    [11] LI X W, ZHAO Y G, Zhang X Y, et al. Explicit Model of Outcrossing Rate for Time-Variant Reliability[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(1): 04021087.
    [12] 罗立胜, 陈志华. 锈蚀钢构件时变可靠度的重要抽样法研究[J]. 工业建筑, 2019, 49(8): 1-5+107.LUO L S, CHEN Z H. Time-dependent reliability analysis of corroded steel members based on the important sampling method[J]. Industrial Construction, 2019, 49(8): 1-5+107. (in Chinese)
    [13] WANG D, QIU H, GAO L, et al. A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis[J]. Reliability Engineering &System Safety, 2021, 216(2): 107931.
    [14] 王思文, 王宪杰, 胡彪, 等. 基于概率密度演化理论的LRB隔震支座时变可靠度研究[J]. 计算力学学报, 2020, 37(06): 776-782.WANG S W, WANG X J, HU B, et al. Study on time -varying reliability of LRB isolated bearings based on probability density evolution method[J]. Chinese Journal of Computational Mechanics, 2020, 37(06): 776-782. (in Chinese)
    [15] LING C, LU Z, ZHU X. Efficient methods by active learning Kriging coupled with variance reduction based sampling methods for time-dependent failure probability[J]. Reliability Engineering &System Safety, 2019, 188(8): 23-35.
    [16] ZHANG D Q, ZHOU P F, CHEN J, et al. A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384(10): 113990.
    [17] RICE S. O. Mathematical Analysis of Random Noise[J]. Bell System Technical Journal, 1944, 23(3): 282-332.
    [18] ANDRIEU-RENAUD C, SUDRET B, LEMAIRE M. The PHI2 method: a way to compute time-variant reliability[J]. Reliability Engineering & System Safety, 2004, 84(1): 75-86.
    [19] SUDRET, BRUNO. Analytical derivation of the outcrossing rate in time-variant reliability problems[J]. Structure & Infrastructure Engineering, 2008, 4(5): 353-362.
    [20] SHINOZUKA M. Probability of failure under random[J]. Journal of the Engineering Mechanics Division, 1964, 90(5): 147-170.
    [21] 范文亮, 杨朋超, 李正良. 基于Mehler公式的等效相关系数求解技术[J]. 同济大学学报:自然科学版, 2016, 44(6): 838-844.FAN W L, YANG P C, LI Z L. A Technique for Solution of Equivalent Correlation Coefficients Based on the Mehler's Formula[J]. Journal of Tongji University (Natural Science), 2016, 44(6): 838-844. (in Chinese)
    [22] 刘丞, 范文亮, 余书君, 等. 基于主动学习Kriging模型的改进一次可靠度方法[J/OL]. 工程力学: 1-9[2023-01-13].LIU C, FAN W L, YU S J, et al. Improved first order reliability method based on adaptive kriging model online first[j/ol]. Engineering mechanics: 1-9[2023-01-13]. (in Chinese)
    [23] 贡金鑫, 赵国藩. 二维正态分布函数值的一个近似算法[J]. 计算结构力学及其应用, 1996(04): 118-123.GUO J X, ZHAO G P. An approximate algorithm for bivariate normal integral[J]. Chinese Journal of Computational Mechanics, 1996(04): 118-123. (in Chinese)
    [24] 黄新萍, 姜潮, 韩旭. 针对非线性极限状态方程的时变可靠度分析[J]. 力学学报, 2014, 46(2): 264-272.HUANG X P, JIANG C, HAN X. A time-variant reliability analysis method for non-linear limit-state functions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 264-272. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:153
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:2023-11-02
  • 录用日期:2023-11-20
文章二维码