锈蚀PC梁疲劳寿命预测及界面滑移区量化研究
CSTR:
作者:
作者单位:

长沙理工大学 土木工程学院

中图分类号:

TU378.2

基金项目:

国家重点研发计划,国家自然科学基金资助项目,湖南省自然科学基金项目资助项目,湖南省研究生科研创新资助项目


Study on fatigue life prediction and interface slip zone quantitation of corroded PC beams
Author:
Affiliation:

School of Civil Engineering,Changsha University of Science and Technology

Fund Project:

National Key Research and Development Program of China,National Natural Science Foundation of China,Natural Science Foundation of Hunan Province,Postgraduates Scientific Research Innovation Project of Hunan Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    重复荷载和锈蚀共同作用会造成预应力混凝土(PC)构件疲劳损伤,降低其使用寿命。本文以钢绞线疲劳裂纹扩展尺寸、混凝土疲劳累积残余应变为损伤参数,综合考虑钢绞线疲劳裂纹扩展、界面锈蚀疲劳粘结退化及混凝土疲劳损伤的影响,提出了考虑力筋残余应变的粘结滑移区不协调变形量化方法及锈蚀PC梁疲劳寿命预测方法。然后通过试验数据验证了预测方法的合理性,并讨论了不同预应力、锈蚀程度和应力水平作用下锈蚀PC梁界面疲劳粘结滑移情况。研究结果表明:提出的预测方法可有效预测界面滑移情况及锈蚀PC梁的疲劳寿命;预应力大小是影响锈蚀PC梁发生疲劳粘结滑移的重要参数,随着锈蚀率、应力水平的增加,构件易发生疲劳粘结滑移,而预应力的增加可有效减少界面疲劳粘结滑移的发生;在高应力水平下更严重的应变不协调会导致更大的残余滑移,滑移量曲线及其斜率随着应力水平的增加而整体抬升、变陡。

    Abstract:

    The combined effects of repeated load and corrosion can cause fatigue damage of prestressed concrete (PC) beams, which would reduce its service life. The fatigue crack growth size of strand and ?cumulative residual strain of concrete were taken as damage parameters in the present study, a quantitative method of uncoordinated deformation in bond-slip zone considering the residual strain of strands and steel bars and a fatigue life prediction method of corroded PC beams were proposed. The methods comprehensively consider the influence of fatigue crack growth of steel strand, interface corrosion fatigue bond degradation and fatigue damage of concrete. Then the rationality of the fatigue life prediction method was verified by experimental data, and the interfacial fatigue bond-slip of corroded PC beams under different prestress, corrosion degree and stress level were discussed. Results show that the proposed methods can effectively predict the interface slip and the fatigue life of corroded PC beams. The prestress is an important parameter that affects the fatigue bond-slip of corroded PC beams. With the increase of corrosion loss and stress level, the specimen is prone to occur the fatigue bond-slip, and the increase of prestress force can effectively reduce the interfacial fatigue bond-slip. At the high stress levels, the more serious strain incompatibility will lead to more residual slip, the slip curve and its slope would rise and steepen as the stress level increases.

    参考文献
    [1] 喻宣瑞,姚国文,范伟庆.交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J].材料导报,2021,35(20):20087-20091.YU X R, YAO G W, FAN W Q. Experimental on the corrosion fatigue behavior of steel strands under the couple effect of variable load and chloride environment[J]. Materials Reports, 2021,35(20):20087-20091. (in Chinese)
    [2] ZHANG W P, LIU X G, GU X L. Fatigue behavior of corroded prestressed concrete beams[J]. Construction and Building Materials, 2016, 106: 198-208.
    [3] 余芳, 贾金青, 姚大立, 等. 腐蚀预应力钢绞线的疲劳试验分析[J]. 哈尔滨工程大学学报,2014,35(12):1487-1491+1502.YU F, JIA J Q, YAO D L, et al. Experimental analysis of fatigue properties of corroded prestressing strands[J]. Journal of Harbin Engineering University, 2014,35(12):1487-1491+1502. (in Chinese)
    [4] DU Y X, WEI J, YUAN J, et al. Experimental research on fatigue behavior of prestressed concrete beams under constant-amplitude and variable-amplitude fatigue loading[J]. Construction and Building Materials, 2020, 259: 119852.
    [5] MOHANDOSS P, PILLAI R G, GETTU R. Determining bond strength of seven-wire strands in prestressed concrete[J]. Structures, 2021, 33: 2413-2423.
    [6] LIN H W, ZHAO Y X. Effects of confinements on the bond strength between concrete and corroded steel bars[J]. Construction and Building Materials, 2016, 118: 127-138.
    [7] 张建仁,易驹,张旭辉,等.锈胀影响下钢绞线与混凝土粘结性能研究[J].建筑结构,2017,47(04):26-34.HAGN J R, YI J, ZHAGN X H, et al. Study on bond performance between steel strand and concrete under corrosion-induced impact[J]. Building Structure, 2017,47(04):26-34.
    [8] MA Y F, XIANG Y B, WANG L, et al. Fatigue life prediction for aging RC beams considering corrosive environments[J]. Engineering Structures, 2014, 79: 211-221.
    [9] GUO Z Z, MA Y F, WANG L, et al. Modelling guidelines for corrosion-fatigue life prediction of concrete bridges: Considering corrosion pit as a notch or crack[J]. Engineering Failure Analysis, 2019, 105: 883-895.
    [10] MIARKA P, SEITL S, BILEK V, et al. Assessment of fatigue resistance of concrete: S-N curves to the Paris’ law curves[J]. Construction and Building Materials, 2022, 341: 127811.
    [11] 牛荻涛, 苗元耀. 基于车辆荷载的锈损公路桥梁疲劳性能试验研究[J]. 土木工程学报,2018,51(03):1-10.NIU D T, MIAO Y Y. Experimental study on fatigue performance of corroded highway bridges based on vehicle loading[J]. China Civil Engineering Journal, 2018,51(03):1-10. (in Chinese)
    [12] 林红威, 赵羽习, 郭彩霞, 等. 锈胀开裂钢筋混凝土粘结疲劳性能试验研究[J]. 工程力学,2020,37(01):98-107.LIN H W, ZHAO Y X, GUO C X, et al. Fatigue of the bond behavior of corroded reinforced concrete with corrosion-induced cracks[J]. Engineering Mechanics, 2020,37(01):98-107. (in Chinese)
    [13] LI R, MIAO C Q, FENG Z X, et al. Experimental study on the fatigue behavior of corroded steel wire[J]. Journal of Constructional Steel Research, 2021, 176: 106375.
    [14] MA Y F, GUO Z Z, WANG L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J]. Journal of Structural Engineering, 2020, 146(7): 04020117.
    [15] 刘浩, 巴光忠, 苗吉军, 等. 锈蚀钢筋横截面积分布规律统计分析[J]. 土木与环境工程学报(中英文),2022,44(05):205-216.LIU H, BA G Z, MIAO J J, et al. Statistical analysis of cross-sectional area distribution law of corroded reinforcing steel bars[J]. Journal of Civil and Environmental Engineering, 2022,44(05):205-216. (in Chinese)
    [16] 李富民,袁迎曙,张建清.氯盐腐蚀钢绞线的断裂抗力分布模型[J]. 土木与环境工程学报(中英文),2009,31(06):34-39.LI F M, YUAN Y S, ZHANG J Q. Distribution models of the fracture resistance of steel strands corroded by chloride[J]. Journal of Civil and Environmental Engineering, 2009,31(06):34-39. (in Chinese)
    [17] ZHENG Y Q, WANG Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue[J]. Corrosion Science, 2020, 164: 108368.
    [18] LIAO X X, LI Y D, QIANG B, et al. An improved crack growth model of corrosion fatigue for steel in artificial seawater[J]. International Journal of Fatigue, 2022, 160: 106882.
    [19] LIU Y M, MAHADEVAN S. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method[J]. Engineering Fracture Mechanics, 2009, 76(15): 2317-2331.
    [20] CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering failure analysis, 2009, 16(7): 2467-2472.
    [21] WANG L, ZHANG X H, ZHANG J R, et al. Simplified model for corrosion-induced bond degradation between steel strand and concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016257.
    [22] ZHANG J R, GUO Z Z, MA Y F, et al. Fatigue life prediction of corroded RC beams considering bond degradation[C]. Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, 2021: 710-716.
    [23] 阎西康, 梁琳霄, 梁琛. 疲劳荷载作用下植筋锚固粘结的滑移性能[J]. 土木与环境工程学报(中英文),2020,42(02):149-156.YAN X K, LIANG L X, LIANG C. Bond slip behavior of post-installed anchorage under fatigue load[J]. Journal of Civil and Environmental Engineering, 2020,42(02):149-156. (in Chinese)
    [24] 张丽华. 钢绞线受腐蚀的部分预应力混凝土梁疲劳性能研究[D]. 辽宁:大连理工大学,2018.ZHANG L H. Study on fatigue behavior of partial prestressed concrete beams with corroded strands[D]. Liaoning: Dalian University of Technology, 2018. (in Chinese)
    [25] 卫军, 李松林, 董荣珍, 等. 考虑残余变形影响的混凝土疲劳损伤本构模型[J]. 湖南大学学报(自然科学版),2016,43(7):57-61.WEI J, LI S L, DONG R Z, et al. Fatigue damage constitutive model of concrete considering the effect of residual deformation[J]. Journal of Hunan University (Natural Sciences), 2016,43(7):57-61. (in Chinese)
    [26] SU X C, MA Y F, WANG L, et al. Fatigue life prediction for prestressed concrete beams under corrosion deterioration process[J]. Structures, 2022, 43: 1704-1715.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:123
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:2023-04-28
  • 录用日期:2023-05-19
文章二维码