新型两阶段屈曲约束支撑滞回性能试验研究
CSTR:
作者:
作者单位:

四川大学建筑与环境学院

基金项目:

国家自然基金(51878426);科技部重点研发计划国际合作项目(2022YFE0113600)


Experimental study on hysteretic behavior of a new two-stage buckling-restrained brace
Author:
Affiliation:

Department of Civil Engineering, Sichuan University

Fund Project:

National Natural Science Foundation of China (No. 51878426); Key Research and Development Program of International Cooperation of Ministry of Science and Technology (No. 2022YFE0113600)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提升传统屈曲约束支撑的性能,特别是解决传统阻尼器在主震-余震型地震作用下发生断裂后无法为结构提供抗侧刚度和耗能能力的问题,提出了一种新型两阶段屈曲约束支撑(Two-stage Buckling-restrained Brace, 简称TS-BRB)。TS-BRB的耗能单元由三个横截面沿纵向渐变的Q235钢板串联组成,中部的耗能段在地震中首先发挥耗能作用,若该段发生断裂,约束单元中的限位卡槽能够确保端部耗能段继续工作,从而使TS-BRB具备较传统BRB更高的耗能能力。TS-BRB的滑移距离通过调整限位卡槽的长度来限制,从而满足结构减震设计的使用需求。TS-BRB的试验结果表明:该阻尼器的滞回曲线饱满,滞回曲线形状符合理论预期;TS-BRB具有明显的二阶段耗能特性,耗能单元的端部耗能段在中间耗能段断裂后可继续工作,断裂后的附加累计耗能为断裂前的138.41%。TS-BRB解决了传统BRB在断裂后随即失去承载和耗能能力的问题,能够为结构提供更大的耗能储备。最后使用ABAQUS建立实体单元数值模型,发现模拟与试验的滞回曲线吻合较好。

    Abstract:

    A novel two-stage buckling-restrained brace (TS-BRB) has been proposed to enhance the performance of conventional buckling-restrained braces (BRB), particularly addressing the problem that conventional BRB cannot provide lateral resistance and energy dissipation capacity to the structure after failure under the action of major-after shocks. The energy dissipation unit of TS-BRB consists of three Q235 steel plates in series with tapering cross-section along the longitudinal axis. The energy dissipation section in the middle plays the role of energy dissipation firstly during earthquake, and if this section breaks, the limit slot in the restraint unit ensures the rest of the energy dissipation section keeps working, thus giving TS-BRB a higher energy dissipation capacity than conventional BRB. The slipping distance of TS-BRB is limited by varying the length of the limit slot, enabling the brace to meet the requirements for structural damping design. Test results demonstrate that the hysteresis curve of the TS-BRB is saturated and the shape of the hysteresis curve is consistent with theoretical expectations. TS-BRB exhibits evident two-stage energy dissipation characteristics, with the end energy dissipation section continuing to operate after the middle energy dissipation section breaks. The additional accumulated energy dissipation after the fracture is 138.41% of that before the fracture. The TS-BRB provides a solution to the issue of conventional BRBs losing load-bearing and energy-dissipation capacity immediately after fracture and offers greater energy dissipation reserves for the structure. Finally,a numerical model was established in ABAQUS,which demonstrates that the hysteretic curve of numerical simulation agrees well with that of experiment.

    参考文献
    [1] Wakabayashi M, Nakamura T, et al. Experimental Study on the Elasto-Plastic Behavior of Braces Enclosed by Precast Concrete Panels under Horizontal Cyclic Loading (Part 1 and Part 2) [C]. Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1973, 10: 1041-1044. (in Japanese)
    [2] Fujimoto M, Wada A, Saeki E, et al. A Study on the Unbonded Brace Encased in Buckling-Restraining Concrete and Steel Tube[J]. Journal of Structural and Construction Engineering, Architectural Institute of Japan, 1988, 34B: 249-258. (in Japanese)
    [3] Avci-Karatas C, Celik O C, Yalcin C. Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs) [J]. International Journal of Steel Structures, 2018, 18(2): 650-673.
    [4] 周云, 钟根全, 龚晨, 陈清祥. 开孔钢板装配式屈曲约束支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2019, 40(03): 152-160. DOI: 10.14006/ j.jzjgxb. 2019. 03. 016.
    [5] Zhao J X, Wu B, Li W, Ou J P. Local buckling behavior of steel angle core members in buckling-restrained braces: Cyclic tests, theoretical analysis, and design recommendations [J]. Eng Struct, 2014, 66: 129-145.
    [6] Usami T, Funayama J, Imase F, Wang C-L. Experimental Evaluation on Seismic Performance of Steel Trusses with Different Buckling-restrained Diagonal Members [C]. The 15th World Conference on Earthquake Engineering, Lisbon. 2012.
    [7] Jia M, Lu D, Sun L, et al. Performance Testing and Cyclic Behavior of Buckling-Restrained Braces with H Cross Section Unrestrained Segments[J]. Advances in Structural Engineering, 2014, 17(5): 677-692.
    [8] Hoveidae N, Tremblay R, Rafezy B, et al. Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces[J]. Journal of Constructional Steel Research, 2015, 114(NOV.): 89-99.
    [9] Chou C.C, Chen, et al. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces [J]. ENGINEERING STRUCTURES, 2010, 32(8): 2108-2121.
    [10] Jiang Tao, Dai Junwu, Yang Yongqiang, Liu Yongbin, Bai Wen. Study of a new-type of steel buckling-restrained brace[J]. Earthquake Engineering and Engineering Vibration, 2020, 19(01): 239-256.
    [11] Guo Y L, Tong J Z, Wang X A, et al. Subassemblage tests and design of steel channels assembled buckling-restrained braces[J]. Bulletin of Earthquake Engineering, 2018, 16: 4191-4224.
    [12] Guo Y L, Zhou P, Wang M Z, et al. Experimental and numerical studies of hysteretic response of triple-truss-confined buckling-restrained braces[J]. Engineering Structures, 2017, 148(oct.1): 157-174.
    [13] Zhu B L, Guo Y L, Gao J K, et al. Behaviour and design of spatial triple-truss-confined BRBs with a longitudinal shuttle shape[J]. Engineering Structures, 2020, 215(9):110605.
    [14] Guo Y L, Zhang B H, Zhu B L, et al. Theoretical and experimental studies of battened buckling-restrained braces[J]. Engineering Structures, 2017, 136(APR. 1): 312-328.
    [15] Zhu B L, Guo Y L, Zhou P, et al. Numerical and experimental studies of corrugated-web-connected buckling-restrained braces[J]. Engineering Structures, 2017, 134(MAR. 1): 107-124.
    [16] Ding Y, Zhao C. Cyclic tests for assembled X-shaped buckling restrained brace using two unconnected steel plate braces[J]. Journal of Constructional Steel Research, 2021, 182(4): 106680.
    [17] 胡宝琳, 徐庆. “类十字” 双阶屈服屈曲约束支撑理论研究及数值分析[J]. 建筑钢结构进展, 2022, 24(01): 98-107. DOI: 10.13969/j.cnki.cn31-1893. 2022. 01. 010.
    [18] Pan P, Li W, Nie X, et al. Seismic performance of a reinforced concrete frame equipped with a double‐stage yield buckling restrained brace[J]. The Structural Design of Tall and Special Buildings, 2016, 26(4): e1335.1-e1335. 10.
    [19] Sun J, Pan P, Wang H. Development and experimental validation of an assembled steel double-stage yield buckling restrained brace[J]. Journal of Constructional Steel Research, 2018, 145(JUN.): 330-340.
    [20] Barbagallo F, Bosco M, Marino E M, et al. Achieving a more effective concentric braced frame by the double-stage yield BRB[J]. Engineering Structures, 2019, 186(MAY 1): 484-497.
    [21] 吴国强, 杨瑞欣, 张秀芬. 一种双阶段耗能BRB, CN210459616U[P]. 2020.
    [22] Ali C, Ali R M, Mohsen I. Seismic Performance of Three-core Buckling-Restrained Braces An Experimental Investigation[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021: 1-11.
    [23] Sitler B, Takeuchi T, Matsui R, et al. Experimental investigation of a multistage buckling-restrained brace[J]. Engineering Structures, 2020, 213: 110482.
    [24] 张哲, 周童童, 邓恩峰, 卜刚, 李汇锋. 双阶屈服屈曲约束支撑混凝土框架结构抗震性能研究[J]. 建筑结构, 2021, 51(18): 106-111. DOI: 10.19701/j.jzjg.2021.18.016.
    [25] Li L, Zhou T, Chen J, et al. A new buckling-restrained brace with a variable cross-section core[J]. Advances in Civil Engineering, 2019, 2019: 1-15.
    [26] 李亮, 彭先飞, 周天华, 惠宽堂, 刘晓倩. 二阶段屈服方形截面防屈曲支撑设计方法及受力性能[J]. 中南大学学报(自然科学版), 2016, 47(08): 2784-2792.
    [27] PanP., LiW., NieX., DengK., SunJ., Seismic performance of a reinforced concrete frame equipped with a double‐stage yield buckling restrained brace, The Structural Design of Tall and Special Buildings 26(4) (2017) e1335.
    [28] SunJ., PanP., WangH., Development and experimental validation of an assembled steel double-stage yield buckling restrained brace, Journal of Constructional Steel Research 145 2018) 330-340.
    [29] WangW., LiuY., Concept and performance testing of an all-steel miniature dual stiffness damper, Journal of Constructional Steel Research 183 2021 106772.
    [30] GB 50011-2010, 建筑抗震设计规范[S].
    [31] GB 50017-2017, 钢结构设计标准[S].
    [32] JGJ 297-2013, 建筑消能减震技术规程[S].
    [33] 石永久,王萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(03): 293-300.
    [34] Wang W, Liu Y. Concept and performance testing of an all-steel miniature dual stiffness damper[J]. Journal of Constructional Steel Research, 2021, 183(9): 106772.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:208
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-03
  • 最后修改日期:2023-05-04
  • 录用日期:2023-05-19
文章二维码