基于无人机图像与深度学习的高原区隧道洞门墙病害检测方法
CSTR:
作者单位:

1.长安大学公路学院;2.新疆交通建设管理局

基金项目:

新疆重大科技专项(2020A03003-7);陕西省自然科学基础研究计划面上项目(2021JM-180);中央高校基本科研业务费资助项目 (领军人才计划)(300102211302)


Disease Detection method of Tunnel Portal in Plateau regions based on UAV images and Deep Learning
Author:
Affiliation:

1.School of Highway, Chang’an University;2.Xinjiang Transportation Construction Administration

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对修建在高原恶劣环境下的的隧道洞门墙病害频发及传统人工病害检测方法效率低下、危险性高等问题,提出了基于无人机图像与深度学习的高原区隧道洞门墙病害检测方法。首先使用无人机航拍采集了新疆某高原区隧道洞门墙病害图像,建立一个多病害语义分割数据集。随后以语义分割模型DeeplabV3+为基础,提出以MobileNetV2作为主干特征提取网络的改进模型TP-DeeplabV3+,以减少模型参数;采用FocalLoss作为损失函数,以解决病害图像中的类别不平衡问题;添加CA注意力机制,以提升模型分割性能;最后提出病害量化方法。实验结果表明,TP- DeeplabV3+在测试集上可以达到88.37%和94.93%的mIoU和mPA,模型体量压缩了88.83%;提出的病害量化方法对于病害覆盖率的绝对误差不超过0.3%,相对误差维持在7.31%以下。相比传统方法,所提方法安全、准确地实现了高原恶劣环境下的隧道洞门墙智能化检测。

    Abstract:

    Aiming at the frequent diseases of tunnel portal built in the harsh environment of plateau region and the problems of low efficiency and high risk of traditional manual disease detection method, a disease detection method of tunnel portal in plateau region based on UAV image and deep learning was proposed. Firstly, an Unmanned Aerial Vehicle (UAV) was used to collect the disease images of a tunnel portal in the plateau region of Xinjiang, and a multi disease semantic segmentation dataset was constructed. Then, based on DeeplabV3+, an improved model TP-DeeplabV3+ was proposed, which used MobileNetV2 as the backbone feature extraction network to reduce the model parameters; Focalloss was used as the loss function to solve the problem of category imbalance in disease images; CA attention mechanism was uesd to improve the segmentation performance; and the disease quantification method was proposed. Experiment results show that TP-DeeplabV3+ can reach 88.37% and 94.93% of mIoU and mPA on the testset, and the model volume is reduced by 88.83%; The absolute error of the proposed disease quantification method for disease coverage rate is less than 0.3%, and the relative error is maintained below 7.31%. Compared with the traditional manual method, the proposed method can realize the intelligent detection of tunnel portal safely and accurately in plateau region.

    参考文献
    [1] 刘海京, 夏才初, 朱合华, 等. 隧道病害研究现状与进展[J]. 地下空间与工程学报, 2007, 3(5): 947-953.IU Hai-jing, XIA Cai-chu, ZHU He-hua, et al. Studies on tunnel damage [J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5): 947–953.
    [2] Xu X, Yang H. Vision measurement of tunnel structures with robust modelling and deep learning algorithms [J]. Sensors, 2020, 20(17): 4945.
    [3] [3 Andrushia A D, Anand N, Arulraj G P. Evaluation of thermal cracks on fire exposed concrete structures using Ripplet? transform [J]. Mathematics and Computers in Simulation, 2021, 180: 93-113.
    [4] Huang H-w, Li Q-t, Zhang D-m. Deep learning based image recognition for crack and leakage defects of metro shield tunnel [J]. Tunnelling and underground space technology, 2018, 77: 166-176.
    [5] 任松, 朱倩雯, 涂歆玥, 等. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(01): 92-99.EN Song, ZHU Qian-wen, TU Xin-yue, et al.Lining disease identification of highway tunnel based on deep learning[J].Journal of Zhejiang University (Engineering Science),2022, 56(01): 92-99.
    [6] 陈莹莹, 刘新根, 黄永亮, 等. 基于神经网络与边缘修正的隧道衬砌裂缝识别[J]. 现代隧道技术, 2022, 5906: 24-34.HEN Yingying, LIU Xingen, HUANG Yongliang, et al. Crack Identification of Tunnel Lining Based on Neural Network and Edge Correction[J].Modern Tunnelling Technology, 2022, 59(6): 24-34.
    [7] 张劲泉,晋杰,汪云峰等.公路桥梁智能检测技术与装备研究进展[J].公路交通科技,2023,40(01):1-27+58.HANG Jinquan, Jin Jie, WANG Yunfeng,et al. Study Progress of Intelligent Inspection Technology and Equipment for Highway Bridge[J]. Journal of Highway and Transportation research and Development, 2023,40(01):1-27+58.
    [8] 雷斯达,曹鸿猷,康俊涛.基于深度学习的复杂场景下混凝土表面裂缝识别研究[J].公路交通技,2020,37(12):80-88.EI Sida, CAO Hongyou,KANG Juntao. Study on Concrete Surface Crack recognition in Complex Scenario Based on Deep Learning [J]. Journal of Highway and Transportation research and Development, 2020,37(12):80-88.
    [9] 李想, 熊进刚. 基于深度学习的低光照条件的混凝土裂缝检测[J]. 建筑结构, 2021, 51(S2): 1046-1050.I Xiang, XIONG Jingang.Detection of concrete cracks in low light condition based on deep learning[J].Building Structure,2021,51(S2):1046-1050.
    [10] 饶勇成, 韩晓健, 肖飞, 等. 基于深度学习的混凝土结构多病害检测[J]. 建筑结构, 2021, 51(S2): 1439-1445.AO Yongcheng, HAN Xiaojian, XIAO Fei, et al.Multiple disease detection of concrete structures based on deep learning[J].Building Structure,2021,51(S2):1439-1445.
    [11] 余加勇, 薛现凯, 陈昌富, 等. 基于无人机倾斜摄影的公路边坡三维重建与灾害识别方法[J]. 中国公路学报, 2022, 35(04): 77-86.U Jia-yong, XUE Xian-kai, CHEN Chang-fu, et al.Three-dimensional Reconstruction and Disaster Identification of Highway Slope Using Unmanned Aerial Vehicle-based Oblique Photography Technique[J].China Journal of Highway and Transport,2022,35(04):77-86.
    [12] 丁威, 俞珂, 舒江鹏. 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54(S1): 1-12.ing Wei, Yu Ke, Shu Jiangpeng.Method for detecting cracks in concrete structures based on deep learning and UAV[J].China Civil Engineering Journal,2021,54(S1):1-12.
    [13] 余加勇, 李锋, 薛现凯, 等. 基于无人机及Mask R-CNN的桥梁结构裂缝智能识别[J]. 中国公路学报, 2021, 34(12): 80-90.U Jia-yong, LI Feng, XUE Xian-kai, et al.Intelligent Identification of Bridge Structural Cracks Based on Unmanned Aerial Vehicle and Mask R-CNN[J].China Journal of Highway and Transport,2021,34(12):80-90.
    [14] Chen L-C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation; proceedings of the Proceedings of the European conference on computer vision (ECCV), F, 2018 [C].
    [15] Shamsabadi E A, Xu C, Rao A S, et al. Vision transformer-based autonomous crack detection on asphalt and concrete surfaces [J]. Automation in? Construction, 2022, 140: 104316.
    [16] Li Z, Chen X, Jiang J, et al. Cascaded multiscale structure with self-smoothing atrous convolution for semantic segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13.
    [17] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2018 [C].
    [18] Wang F, Jiang M, Qian C, et al. Residual attention network for image classification; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2017 [C].
    [19] Hu J, Shen L, Sun G. Squeeze-and-excitation networks; proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, F, 2018 [C].
    [20] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design; proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2021 [C].
    [21] 刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(06): 79-98.iu Yufei, Fan Jiansheng,Nie Jianguo,et al.Review and prospect of digital-image-based crack detection of structure surface[J].China Civil Engineering Journal,2021,54(06):79-98.
    [22] 朱劲松, 李欢. 基于深度学习的钢桥病害分割与量化[J]. 东南大学学报(自然科学版), 2022, 52(03): 516-522.hu Jinsong, Li Huan.Segmentation and quantification of steel bridge defects based on deep learning[J].Journal of Southeast University ( Natural Science Edition),2022,52(03):516-522.
    [23] Zheng Z, Zhang Z, Pan W. Virtual prototyping-and transfer learning-enabled module detection for modular integrated construction [J]. Automation in Construction, 2020, 120: 103387.
    [24] Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation [J]. arXiv preprint 2021.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:54
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-05
  • 最后修改日期:2023-12-07
  • 录用日期:2023-12-26
文章二维码